
CalFuzzer: An Extensible Active Testing
Framework for Concurrent Programs

Pallavi Joshi1, Mayur Naik2, Chang-Seo Park1, and Koushik Sen1

1 University of California, Berkeley, USA
{pallavi,parkcs,ksen}@eecs.berkeley.edu

2 Intel Research
mayur.naik@intel.com

Abstract. Active testing has recently been introduced to effectively test
concurrent programs. Active testing works in two phases. It first uses
imprecise off-the-shelf static or dynamic program analyses to identify
potential concurrency bugs, such as data races, deadlocks, and atomicity
violations. In the second phase, active testing uses the reports from these
imprecise analyses to explicitly control the underlying scheduler of the
concurrent program to accurately and quickly discover real concurrency
bugs, if any, with very high probability and little overhead. In this paper,
we present an extensible framework for active testing of Java programs.
The framework currently implements four active testers based on data
races, atomic blocks, deadlocks, and user-specified breakpoints.

1 Introduction
Multi-threaded programs often exhibit wrong behaviors due to unintended inter-
ference between executing threads. Such concurrency bugs—such as data races
and deadlocks—are often difficult to find because they typically happen un-
der very specific interleavings of the executing threads. A traditional method of
testing concurrent programs is to repeatedly execute the program with the hope
that different test executions will result in different interleavings. There are a
few problems with this approach. First, testing being carried out in a particular
environment often fails to come up with interleavings that can potentially hap-
pen in other environments, such as under different system loads. Second, testing
depends on the underlying operating system or the virtual machine for thread
scheduling—it does not try to explicitly control the thread schedules; therefore,
it often ends up executing the same interleaving many times.

Numerous program analysis techniques [2, 5, 1, 4] have been developed to pre-
dict concurrency bugs in multi-threaded programs by detecting violations of
commonly used synchronization idioms. For instance, accesses to a memory lo-
cation without holding a common lock are used to predict data races on the
location, and cycles in the program’s lock order graph are used to predict dead-
locks. These techniques are very effective at finding concurrency bugs because
they can predict bugs that could potentially happen during a real execution—for
such a prediction, they do not need to see actual executions (in the case of static
analysis) or they merely need to see an execution that exhibits a violation of
the idiom without necessarily exhibiting the bug itself (in the case of dynamic
analysis). However, despite recent advances, these techniques often report many

false warnings. Going through all of these warnings and reasoning about them
manually often turns out to be time consuming.

Recently, we have proposed a new technique for finding real bugs in concur-
rent programs, called active testing [8, 6, 3]. Active testing uses a randomized
thread scheduler to verify if the warnings reported by an imprecise static or
dynamic program analysis are real bugs. The technique works as follows. Active
testing first uses an existing imprecise off-the-shelf static or dynamic analysis
technique, such as Lockset [7, 5], Atomizer [1], or Goodlock [2], to compute a
set of potential concurrency bugs. Each potential concurrency bug is typically
identified by a set of program statements. For example, in the case of a data
race, the set contains two program statements that could potentially race with
each other in some concurrent execution. For each potential concurrency bug,
active testing runs the concurrent program under test under random schedules.
Further, active testing biases the random scheduling by pausing the execution
of any thread when the thread reaches a statement involved in the potential
concurrency bug. After pausing a thread, active testing also checks if a set of
paused threads could have created a real concurrency bug. For example, in the
case of a data race, active testing checks if two paused threads are about to
access the same memory location and at least one of them is a write. Thus,
active testing attempts to force the program to take a schedule in which the
concurrency bug actually occurs. In our previous work, we have developed ac-
tive testing algorithms for detecting real data races, atomicity violations, and
deadlocks.

In this paper, we describe an extensible tool for active testing of concurrent
Java programs, called CalFuzzer. CalFuzzer provides a framework for im-
plementing custom schedulers for active testing. We call these custom schedulers
active checkers. The tool also provides a framework and libraries for implement-
ing various imprecise dynamic analysis techniques, such as Lockset, Atomizer,
and Goodlock. A set of program statements involved in a bug could be com-
puted using these dynamic analysis techniques. CalFuzzer also allows the user
to manually specify a set of program statements where an active checker should
pause. Such statements may be thought of as “concurrent breakpoints”.

We have implemented three active checkers in CalFuzzer for detect-
ing real data races, atomicity violations, and deadlocks. We have also imple-
mented three dynamic analysis techniques in CalFuzzer. They are a hybrid
race detector [5], Atomizer [1] for finding potential atomicity violations, and
iGoodlock [3] for detecting potential deadlocks. CalFuzzer provides a method
ActiveChecker.Check() that the user can use in her concurrent program to
specify arbitrary “pause” points (or “breakpoints”) in the program.

We have applied CalFuzzer to several concurrent Java benchmark pro-
grams containing a total of 600K lines of code and have detected both pre-
viously known and unknown data races, atomicity violations, and deadlocks.
CalFuzzer could easily be extended to detect other kinds of concurrency bugs,
such as missed notifications and atomic set violations.

2

Algorithm 1 CalFuzzer with user defined analysis() and check() methods

1: Inputs: the initial state s0 and a set of transitions breakpoints
2: paused := ∅
3: s := s0

4: while Enabled(s) 6= ∅ do
5: t := a random transition in Enabled(s) \ paused
6: analysis(t)
7: if t ∈ breakpoints then
8: paused := check(t, paused)
9: end if

10: if t 6∈ paused then
11: s := Execute(s, t)
12: end if
13: if paused = Enabled(s) then
14: remove a random element from paused
15: end if
16: end while
17: if Alive(s) 6= ∅ then
18: print “ERROR: system stall”
19: end if

2 The Active Testing Framework

In this section, we give a high-level description of our active testing frame-
work. We consider a concurrent system composed of a finite set of threads. Given
a concurrent state s, let Enabled(s) denote the set of transitions that are enabled
in the state s. Each thread executes a sequence of transitions and communicates
with other threads through shared objects. We assume that each thread termi-
nates after the execution of a finite number of transitions. A concurrent system
evolves by transitioning from one state to another state. If s is a concurrent state
and t is a transition, then Execute(s, t) executes the transition t in state s and
returns the updated state.

The pseudo-code in Algorithm 1 describes the CalFuzzer algorithm. The
algorithm takes an initial state s0 and a set of transitions (denoting a potential
concurrency bug), called breakpoints, as input. The set of transitions paused is
initialized to the empty set. Starting from the initial state s0, at every state,
CalFuzzer randomly picks a transition enabled at the state and not present
in the set paused. It then calls the user defined method analysis to perform
a user defined dynamic analysis, such as Lockset, Atomizer, or Goodlock. The
analysis method can maintain its own local state; for example, the local state
could maintain lockset and vector clocks in the case of hybrid race detection.
If transition t is in the set breakpoints, CalFuzzer invokes the user provided
method check, which takes t and the paused set as input and returns an updated
paused set. The check method could be used to implement various active check-
ers. A typical implementation of the check method could add t to the paused set

3

Algorithm 2 The check method for active testing of data races
1: Inputs: transition t and a set of transitions paused
2: if ∃t′ ∈ paused such that t and t′ access same location and one of them is write

then
3: print “Real data race between t and t′” (* next resolve race randomly to check

if something could go wrong due to the race *)
4: if random boolean then
5: add t to paused and remove t′ from paused
6: end if
7: else
8: add t to paused
9: end if

10: return paused

and remove some transitions from the paused set. After the invocation of check,
CalFuzzer executes the transition t if it has not been added to the paused
set by the check method. At the end of each iteration, CalFuzzer removes a
random transition from the paused set if all the enabled transitions have been
paused. The algorithm terminates when the system reaches a state that has no
enabled transitions. At termination, if there is at least one thread that is alive,
the algorithm reports a system stall.

CalFuzzer thus takes two user defined methods: analysis and check. In
order to implement an active testing technique, one needs to define these two
methods. For example, an active testing technique for data races [8] would require
us to implement hybrid race detection in the analysis method and a check
method as shown in Algorithm 2.

3 Implementation Details

We have implemented the CalFuzzer active testing framework for Java. Cal-
Fuzzer (available from http://srl.cs.berkeley.edu/~ksen/calfuzzer/)
instruments Java bytecode to insert the following callback functions be-
fore or after various synchronization operations and shared memory ac-
cesses: startBefore, joinAfter, waitAfter, notifyBefore, notifyAllBefore,
lockBefore, unlockAfter, readBefore, writeBefore. These callback functions
are implemented to invoke various dynamic analyses and active checkers. An im-
precise dynamic analysis is typically implemented by implementing an interface
called Analysis. The interface contains the callback functions described above.

An active checker is implemented by extending the class ActiveChecker
declared below.

4

public c lass ActiveChecker {

f ina l public stat ic Object lock = new Object();
f ina l protected void block(int milliSeconds) { ... }

f ina l protected void unblock(int milliSeconds) { ... }

f ina l public stat ic void blockIfRequired () { ... }

public void check(Collection <ActiveChecker > checkers) {

block (0);

}

f ina l public void check() { ... }

}

An instance of a subclass of ActiveChecker (e.g. RaceChecker) is equiv-
alent to a transition in Algorithm 1. The check() method defined by this
class is equivalent to the check method used in Algorithm 1. This method in
turn calls method check(Collection<ActiveChecker> checkers). A subclass
of ActiveChecker should override the check(Collection<ActiveChecker>
checkers) method. The default implementation blocks (i.e. pauses) the cur-
rent thread (i.e. the transition denoted by the ActiveChecker object). The
user can use ActiveChecker.Check() in the code under analysis to indicate
a “breakpoint”. The class also provides other methods, such as block(int
milliSeconds) to pause the current thread and unblock(int milliSeconds)
to continue a paused thread. These methods should be used in a custom imple-
mentation of the check(Collection<ActiveChecker> checkers) method.

The framework also provides various utility classes, such as
VectorClockTracker and LocksetTracker to compute vector clocks and
locksets at runtime. Methods of these classes are invoked in the various callback
functions described above. These utility classes are used in the hybrid race
detection [5] and iGoodlock [3] algorithms. Other user defined dynamic analyses
could also use these utility classes.

The instrumentor of CalFuzzer modifies all bytecode associated with a
Java program including the libraries it uses, except for the classes that are used to
implement CalFuzzer. This is because CalFuzzer runs in the same memory
space as the program under analysis. CalFuzzer cannot track lock acquires
and releases by native code. As such, there is a possibility that CalFuzzer can
go into a deadlock if there are synchronization operations inside uninstrumented
classes or native code. To avoid such scenarios, CalFuzzer runs a low-priority
monitor thread that periodically polls to check if there is any deadlock. If the
monitor discovers a deadlock, then it removes one random transition from the
paused set.

CalFuzzer can also go into livelocks. Livelocks happen when all threads of
the program end up in the paused set, except for one thread that does something
in a loop without synchronizing with other threads. We observed such livelocks
in a couple of our benchmarks including moldyn. In the presence of livelocks,
these benchmarks work correctly because the correctness of these benchmarks
assumes that the underlying Java thread scheduler is fair. In order to avoid
livelocks, CalFuzzer creates a monitor thread that periodically removes those
transitions from the paused set that are waiting for a long time.

5

4 Results
Table 1 summarizes some of the results of running active testing on several
real-world Java programs. Further details are available in [8, 6, 3]. Note that
the bugs reported by the active checkers (e.g. RaceFuzzer, AtomFuzzer, and
DeadlockFuzzer) are real concurrency bugs, whereas the bugs reported by the
dynamic analyses (e.g. hybrid race detection, iGoodlock, and Atomizer) could
be false warnings.

Number of reported bugs

Benchmark LoC HRD RaceFuzzer iGoodlock DeadlockFuzzer Atomizer AtomFuzzer

jspider 10,252 29 0 0 0 28 4
sor 17,718 8 0 0 0 0 0
hedc 25,024 9 1 0 0 3 0
jigsaw 160,388 547 36 283 29 60 2
Java Swing 337,291 - - 1 1 - -
Table 1. Results for benchmarks: LoC is Lines of Code; HRD is Hybrid Race Detection

CalFuzzer provides a framework for writing custom randomized schedulers
that could quickly find real bugs. We have currently implemented three active
checkers in this framework and we believe that CalFuzzer provides a simple
extensible framework to experiment with other active checkers and dynamic
analysis techniques.

References

1. C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity checker for multi-
threaded programs. In 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 256–267, 2004.

2. K. Havelund. Using runtime analysis to guide model checking of java programs.
In 7th International SPIN Workshop on Model Checking and Software Verification,
pages 245–264, 2000.

3. P. Joshi, C.-S. Park, K. Sen, and M. Naik. A randomized dynamic program analysis
technique for detecting real deadlocks. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’09) (to appear), 2009.

4. M. Naik, A. Aiken, and J. Whaley. Effective static race detection for java. In
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pages 308–319, 2006.

5. R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In ACM
SIGPLAN symposium on Principles and practice of parallel programming, pages
167–178. ACM, 2003.

6. C.-S. Park and K. Sen. Randomized active atomicity violation detection in concur-
rent programs. In SIGSOFT ’08/FSE-16: Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, pages 135–145,
New York, NY, USA, 2008. ACM.

7. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser:
A dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst., 15(4):391–411, 1997.

8. K. Sen. Race directed random testing of concurrent programs. In Programming
Language Design and Implementation (PLDI’08), 2008.

6

