
Sound and Complete Monitoring of Sequential
Consistency for Relaxed Memory Models

Jabob Burnim, Koushik Sen, and Christos Stergiou
{jburnim,ksen,chster}@cs.berkeley.edu

EECS Department, University of California, Berkeley

Abstract. We present a technique for verifying that a program has no
executions violating sequential consistency (SC) when run under the re-
laxed memory models Total Store Order (TSO) and Partial Store Order
(PSO). The technique works by monitoring sequentially consistent execu-
tions of a program to detect if similar program executions could fail to be
sequentially consistent under TSO or PSO. We propose novel monitoring
algorithms that are sound and complete for TSO and PSO—if a program
can exhibit an SC violation under TSO or PSO, then the corresponding
monitor can detect this on some SC execution. The monitoring algo-
rithms arise naturally from the operational definitions of these relaxed
memory models, highlighting an advantage of viewing relaxed memory
models operationally rather than axiomatically. We apply our technique
to several concurrent data structures and synchronization primitives, de-
tecting a number of violations of sequential consistency.

1 Introduction

Programmers writing concurrent software often assume that the underly-
ing memory model is sequentially consistent. However, sequential consistency
strongly constrains the ordering of memory operations, which can make it dif-
ficult to achieve high performance in commodity microprocessors [9, 20]. Thus,
to enable increased concurrency and performance, processors often provide a re-
laxed memory model. Unfortunately, working with relaxed memory models often
requires subtle and difficult reasoning [9, 20].

Nevertheless, developers of high-performance concurrent programs, such as
lock-free data-structures and synchronization libraries, often use regular load
and store operations, atomic compare-and-swap-like primitives, and explicit data
races instead of locks to increase performance. Concurrency bugs are notoriously
hard to detect and debug; relaxed memory models make the situation even worse.

Recently, there has been great interest in developing techniques for the ver-
ification and analysis of concurrent programs under relaxed memory models [9,
20, 13, 3, 15, 4, 2, 10]. In a promising and practical approach for such verification,
Burckhardt and Musuvathi [4] argued that programmers, despite using ad-hoc
synchronization, expect their program to be sequentially consistent. They pro-
posed SOBER, which monitors sequentially consistent executions to detect vio-
lations of sequential consistency (SC). A key observation made in their work is
that, for the Total Store Order (TSO) [23] memory model (which is quite similar

to that of the x86 architecture [21]), if a program execution under TSO violates
sequential consistency (SC), then this fact can be detected by examining some
sequentially consistent execution of the program. Therefore, if run-time monitor-
ing is combined with a traditional model checker, which explores all sequentially
consistent executions of the program, then all violations of SC under TSO can
be detected. Burckhardt and Musuvathi [4] use an axiomatic definition of SC
and TSO to derive the SOBER monitoring algorithm.

In this paper, we develop two novel monitoring algorithms for detecting vio-
lations of sequential consistency (SC) under relaxed memory models Total Store
Order (TSO) [23] and Partial Store Order (PSO) [23]. Each algorithm, when
monitoring a sequentially consistent execution of a program, simulates a similar
TSO or PSO execution, reporting if this similar execution can ever violate se-
quential consistency. We prove both monitors sound—if they report a warning,
then the monitored program can violate SC under TSO or PSO—and complete—
if a program can violate SC under TSO or PSO, then the corresponding monitor
can detect this fact by examining some sequentially consistent execution.

Rather than working with axiomatic definitions of these relaxed memory
models, as [4] does, we derive our algorithms from operational definitions of TSO
and PSO. We show that this alternate approach naturally leads to fundamentally
different monitoring algorithms, with several advantages over SOBER.

One advantage of our operational approach is that our monitoring algorithms
follow simply from the operational definitions of TSO and PSO. While monitor-
ing algorithms based on axiomatic definitions require the design of complex
vector clocks, in addition to the standard vector clocks to track the traditional
happens-before relation, our approach can directly “run” the operational mem-
ory model. Thus, we were easily able to develop a monitoring algorithm for PSO,
in addition to TSO—such an extension is unknown for the SOBER algorithm.

Another advantage of our algorithms is that they have a run-time complexity
of O(N ·P) when monitoring a sequentially consistent execution with N shared
memory operations and P processes. This complexity is an improvement over
the run-time complexity O(N · P 2) of the SOBER algorithm. We see this im-
provement in run-time complexity because we do not need to maintain additional
vector clocks for TSO and PSO.

Further, in developing our monitoring algorithms, we discovered a bug in
the SOBER algorithm—in its axiomatic definition of TSO—which makes the
algorithm incomplete. We believe that this bug is quite subtle. The same bug is
also present [21] in the 2007 Intel R© 64 Architecture Memory Order White Paper.
In this paper, we identify and correct the error [8] in the SOBER algorithm
arising from a too-strict axiomatic definition of the TSO memory model.

We have implemented our monitoring algorithms for C programs in
THRILLE [16] and, combined with THRILLE’s preemption-bounded model
checking [19], have applied our monitors to two mutual exclusion algorithms
and several concurrent data structures. Our experiments show that we can detect
sequential consistency violations under TSO or PSO in all of these benchmarks.

2

Other Related Work. There have been many efforts to verify or check con-
current programs on relaxed memory models [9, 20, 13, 3, 15, 4, 2, 10]. Some of
these techniques [13, 3] encode a program and the underlying memory model as
a constraint system and use a constraint solver to find bugs. Other techniques [9,
20, 15] explicitly explore the state space of a program to find bugs.

Recently, [10] proposed an adversarial memory for testing at run-time if a
data race in a Java program could be harmful under Java’s memory model.

2 Preliminaries

We consider a parallel program P to consist of a number of parallel threads,
each with a thread-local state, that communicate though a shared memory. The
execution of a parallel program consists of a sequence of program steps. In each
step, one of the program threads issues a shared memory operation—e.g., a
read or write of a shared variable—and then updates its local state based on its
current local state and anything returned by the memory operation—e.g., the
value read for a shared variable.

Below, we will give operational definitions of relaxed memory models TSO
and PSO as abstract machines. These abstract machine definitions are designed
to be simple for a programmer to understand and to reason about, not to ex-
actly describe the internal structure or operation of real hardware processors. For
example, our operational definitions contain no caches or mechanisms for ensur-
ing cache coherency. At the same time, these operational definitions are faithful
in that they allow exactly the program behaviors allowed by more traditional
axiomatic definitions of TSO and PSO.

2.1 Programming Model

Let Proc be set of all program processes or thread identifiers and Value be the
set of possible program values. Then, we define the set Event of shared memory
operations, or events, to consist of all:

– Stores st(p, a, v) by process p ∈ Proc to address a ∈ Adr of v ∈ Value.
– Loads ld(p, a) by process p ∈ Proc of address a ∈ Adr.
– Atomic operations atm(p, a, f) by p ∈ Proc on a ∈ Adr, which store f(v) to

address a after reading v ∈ Value from a, where f : Value→ Value.
This operations models atomic shared memory primitives such as compare-
and-swap (CAS), fetch-and-add, test-and-set, etc.1

Note that we need not explicitly include a memory fence operation. In our
operational models, memory barriers can be simulated by atomic operations
atm(p, a, f), which restrict reordering or delaying of earlier memory ops.

1 For example, a CAS(a, old,new) by process p is modeled by atm(p, a, f), where
f = (λx. if x = old then new else x). The CAS “succeeds” when it reads value
old, and “fails” otherwise.

3

We denote the process p and address a of an event e ∈ Event by p(e) and
a(e), respectively.

We now formalize programs as independent processes with local state and
communicating only via the above shared memory operations. We abstract un-
necessary details such as the source language, control flow, and structure of the
process-local state. We define a program P to be a tuple (s0,next, update) where:

– Function s0 : Proc→ Σ is the initial program state, mapping process p to its
thread-local state s0(p) ∈ Σ, where Σ is the set of all possible local states.

– Partial function next : Proc×Σ → Event indicates the next memory opera-
tion or event, next(p, σ), that process p issues when in local state σ.
If next is undefined for (p, σ), denoted next(p, σ) = ⊥, then process p is
complete. Program P terminates when next(p, s(p)) = ⊥ for all p.

– Function update : Proc × Σ × Value → Σ indicates the new local state
update(p, σ, v) of process p after it receives response v to op next(p, σ).

We similarly formalize a memory model MM as a labeled transition system
with initial state m0 and with transitions labeled by events from Event, paired
with memory model responses. We also allow memory model MM to have a set
of labeled internal transitions τMM, to model any internal nondeterminism of the
memory model. Then, an execution of program P under memory model MM is
a sequence of labeled transitions:

(s0,m0)
l1−→ (s1,m1)

l2−→ · · · ln−→ (sn,mn)

where each transition (si−1,mi−1)
li−→ (si,mi) is either labeled by an ordered

pair (ei, ri) ∈ Event×Value, in which case:

– ei = next(p(ei), si−1(p(ei)))
– si(p(ei)) = update(p(ei), si−1(p(ei)), ri), where ri is the value returned for
ei, which is ⊥ for stores.

– si(p
′) = si−1(p′) for p′ 6= p(ei)

– mi−1
(ei,ri)−−−−→ mi is a transition in MM

or is labeled by an internal transition from τMM, in which case:

– si = si−1, and mi−1
li−→ mi is a transition in MM

In this model, there are two sources of nondeterminism in a program exe-
cution: (1) The thread schedule—i.e., at each step, which process p executes a
transition, and (2) the internal nondeterminism of the memory model.

3 Operational Memory Models

We now give our operational definitions for three memory models: sequential con-
sistency (SC) and relaxed memory models TSO and PSO. Fundamentally, these
definitions are equivalent to operational definitions given by other researchers
for SC [14, 5, 2, 18], TSO [14, 5, 2, 21, 18], and PSO [14, 2, 18].

4

In our presentation, we aim for definitions that provide a simple and easy to
understand model for a programmer. We present each memory model as a library
or module with an internal state, representing the abstract state of a shared mem-
ory, and with methods store(p, a, v), load(p, a), and atomic(p, a, f) by which a
program interacts with the shared memory. The memory model executes all such
methods atomically—i.e. one at a time and uninterrupted. Additionally, mem-
ory models TSO and PSO each have an internal method storec. Each memory
model is permitted to nondeterministically call this internal method, with any
arguments, whenever no other memory model method is being executed.

A note about connecting these definitions to our formalism in Section 2:

– m
ld(p,a),v−−−−−→ m when load(p, a), run in memory model state m, returns v.

(Note that load(p, a) does not modify the memory model state m.)

– m
st(p,a,v),⊥−−−−−−−→ m′ when store(p, a, v), run in state m, yields state m′.

– m
atm(p,a,f),v−−−−−−−−→ m′ when atomic(p, a, f), run in m, returns v and yields m′.

Sequential Consistency (SC) Our operational definition of SC [17] is given
in Figure 1. The SC abstract machine simply models shared memory as an array
m mapping addresses to values, reading from and writing to this array on loads,
stores, and atomic operations.

Total Store Order (TSO) Our definition of TSO [23] is given in Figure 2. In
addition to modeling shared memory as array m, mapping addresses to values,
the TSO abstract machine has a FIFO write buffer B[p] for each process p.

We omit a proof that our operational definition is equivalent to more tradi-
tional axiomatic ones. Our model is similar to the operational definitions in [4]
and [21], both of which are proved equivalent to axiomatic definitions of TSO.
Conceptually, the per-process write buffers allow stores to be reordered or de-
layed past later loads, while ensuring that each process’s stores become globally
visible in the order in which they are performed. And there is a total order on
all stores—the order in which stores commit—that respects the program order.

Partial Store Order (PSO) Our operational definition of PSO [23] is given
in Figure 3. Our PSO abstract machine is very similar to that of TSO, except
that pending writes are stored in per-process and per-address write buffers. In-
ternal method storec

PSO(p, a) commits the oldest pending store to address a and
atomicPSO(p, a, f) commits/flushes only pending stores to address a.

m[Adr] : Val

storeSC(p, a, v) :
m[a] := v

loadSC(p, a) :
return m[a]

atomicSC(p, a, f) :
ret := m[a]
m[a] := f(m[a])
return ret

Fig. 1. Operational Model of Sequential Consistency (SC).

5

m[Adr] : Val
B[Proc] : FIFOQueue of (Adr,Val)

storeTSO(p, a, v) :
B[p].addLast(a, v)

storec
TSO(p) :

if not B[p].empty():
(a, v) := B[p].removeFirst()
m[a] := v

loadTSO(p, a) :
if B[p].contains((a, ∗)):

(a, v) := last element (a, ∗) of B[p]
return v

else:
return m[a]

atomicTSO(p, a, f):
while not B[p].empty():

storec
TSO(p)

ret := m[a]
m[a] := f(m[a])
return ret

Fig. 2. Operational Model of TSO.

m[Adr] : Val
B[Proc][Adr] : FIFOQueue of Val

storePSO(p, a, v) :
B[p][a].addLast(v)

storec
PSO(p, a) :

if not B[p][a].empty():
m[a] := B[p][a].removeFirst()

loadPSO(p, a) :
if not B[p][a].empty():

return B[p][a].getLast()

else:
return m[a]

atomicPSO(p, a, f):
while not B[p][a].empty():

storec
PSO(p, a)

ret := m[a]
m[a] := f(m[a])
return ret

Fig. 3. Operational Model of PSO.

4 Violations of Sequential Consistency

In this section, we formally define what it means for a program to have a violation
of sequential consistency under a relaxed memory model. In Section 5, we will
give monitoring algorithms for detecting such violations under TSO and PSO
by examining only the SC executions of a program.

4.1 Execution Traces

If a program exhibits some behavior in a TSO or PSO execution, we would like
to say that the behavior is not sequentially consistent if there is no execution
under SC exhibiting the same behavior. We will define a trace of an SC, TSO,
or PSO execution to capture this notion of the behavior of a program execution.

Following [12], [4], and [6], we formally define a trace of an execution of a
program P to be a tuple (E,→p, src,→st), where

– E ⊆ Event is the set of shared memory operations or events in the execution.
– For each process p ∈ Proc, relation →p⊆ E × E is a total order on the

events e ∈ E from process p—i.e. with p(e) = p. In particular, e →p e
′ iff

p(e) = p(e′) and e is before e′ in the execution. Thus, →p does not relate
events from different processes.

6

Relation →p is called the program order relation, and e→p e
′ indicates that

process p issued operation e before issuing e′.
– For each load or atomic operation e ∈ E, partial function src : Event →

Event indicates the store or atomic operation src(e) ∈ Event from which
e reads its value. src(e) = ⊥ indicates that e got its value from no store,
instead reading the initial default value in the shared memory. Note that
a(src(e)) = a(e) whenever src(e) is defined.

– For each address a, relation →st⊆ E × E is a total order on the stores
and atomic operations on a in the execution. In particular, e →st e′ iff
a(e) = a(e′) and e becomes globally visible before e′ in the execution. Thus,
→st does not relate events on different addresses.
Memory models SC, TSO, and PSO all guarantee the existence, for each
address, of such a total order in which the writes to that address become
globally visible2. Note that not all relaxed memory models guarantee the
existence of such an ordering.

Note that we can only define a trace for a complete TSO or PSO execution—
that is, one in which every store has become globally visible or, in the language
of our abstract models, committed. If multiple processes have pending writes to
the same address, then the execution does not specify an order on those writes
and thus does not define a total →st relation.

4.2 Sequential Consistency & The Happens-Before Relation

We define a trace of a program P to be sequentially consistent only if it arises
from some sequentially consistent execution of P :

Definition 1. A trace T = (E,→p, src,→st) of a program P is sequentially
consistent iff there exists some execution of P under SC with trace T .

This definition is not very convenient for showing that a trace is not sequen-
tially consistent. Thus, following [22, 4], we give an axiomatic characterization
of SC traces by defining relations →c and →hb on the events of a trace:

Definition 2. Let (E,→p, src,→st) be a trace. Events e, e′ ∈ E are related by
the conflict-order relation, denoted e →c e

′, iff a(e) = a(e′) and one of the
following holds:

– e is a write, e′ is a read, and e = src(e′),
– e is a write, e′ is a write, and e→st e

′

– e is a read, e′ is a write, and either src(e) = ⊥ or src(e)→st e
′

Definition 3. For a trace (E,→p, src,→st), the happens-before relation is de-
fined as the union of the program-order and conflict-order relations on E—i.e.
→hb = (→p ∪ →c). We refer to the reflexive transitive closure of the happens-
before relation as →∗hb.

2 This property is closely related to store atomicity [1]. TSO and PSO do not techni-
cally have store atomicity, however, because a process’s loads can see the values of
the process’s earlier stores before those stores become globally visible.

7

As observed in [22] and [4], a trace is sequentially consistent iff its →hb

relation is acyclic:

Proposition 1. Let T = (E,→p, src,→st) be a trace of an execution of program
P . Trace T is sequentially consistent iff relation →hb is acyclic on E.

We define a sequential consistency violation as a program execution with a
non-sequentially-consistent trace:

Definition 4. A program P has a violation of sequential consistency under
relaxed memory model TSO (resp. PSO) iff there exists some TSO (resp. PSO)
execution of P with trace T such that T is not sequentially consistent.

5 Monitoring Algorithms

We describe our monitoring algorithms for TSO and PSO in this section. We
suppose here that we are already using a model checker to explore and to verify
the correctness of all sequentially consistent executions of program P . A number
of existing model checkers [19, 16] explore the sequentially consistent, interleaved
schedules of a parallel program.

Figures 4 and 5 list our monitor algorithms for TSO and PSO. We present

our algorithms as online monitors—that is, for an SC execution (s0,m0)
e1,r1−−−→

· · · en,rn−−−→ (sn,mn) of some program P , we run monitorTSO (respectively
monitorPSO) on the execution by:

– Initializing the internal state B and last as described in Figure 4 (resp. 5).
– Then, for each step ei ∈ Event in the execution, from e1 to en, we call

monitorTSO(ei).
– If any of these calls signals “SC Violation”, then P has a sequential con-

sistency violation under TSO (resp., PSO). Note that we do not stop our
monitoring algorithm after detecting the first violation. Thus, we find all
such violations of sequential consistency along each SC execution.

Conceptually, each monitor algorithm works by simulating a TSO (respec-
tively PSO) version of the given SC execution. Array B simulates the FIFO
write buffers in a TSO (resp. PSO) execution, but buffers the pending store
events rather than just the pending values to be written. Lines 16–25 update
these write buffers, queueing a store when the SC execution performs a store
and flushing the buffers when the SC execution performs an atomic operation.

But when should this simulated TSO (resp. PSO) execution “commit” these
pending stores, making them globally visible? Lines 10–12 commit these pend-
ing stores as late as possible while still ensuring that the simulated TSO (resp.
PSO) execution has the same trace and →hb-relation as the SC execution. This
is achieved by, just before simulating operation e by process p on address a, com-
mitting all pending stores to address a from any other process—these pending
stores happen before e in the SC execution, so they must be committed to ensure
they happen before e in the simulated TSO (resp. PSO) execution. Note that, in
the TSO monitor, this may commit pending stores to other addresses, as well.

8

1 B[Proc] : FIFOQueue of (Adr,Event)
2 prev[Proc] : Event initialized to ⊥
3

4 monitorTSO(e):
5 // Could simulation have →hb−cycle?
6 if ∃(a(e), e′) ∈ B[p(e′)] with

p(e′) 6= p(e) ∧ e′ →∗hbprev[p(e)]:
7 signal ‘‘SC Violation’’
8

9 // Ensure equivalence to SC.
10 while ∃(a(e), ∗) ∈ B[p′] with p′ 6= p(e):

11 B[p′].removeFirst()
12 emit stc(p′)
13

14 // Execute e in TSO simulation.
15 prev[p(e)] := e
16 if e =st(p, a, v):
17 B[p].addLast(a, e)
18 emit st(p, a, v)
19 else if e =ld(p, a):
20 emit ld(p, a)
21 else if e =atm(p, a, f):
22 while not B[p].empty():
23 B[p].removeFirst()
24 emit stc(p)
25 emit atm(p, a, f)

Fig. 4. Monitoring algorithm for TSO

1 B[Proc][Adr] : FIFOQueue of Event
2 prev[Proc] : Event initialized to ⊥
3

4 monitorPSO(e):
5 // Could simulation have →hb−cycle?
6 if ∃e′ ∈ B[p(e′)][a(e)] with

p(e′) 6= p(e) ∧ e′ →∗hbprev[p(e)]:
7 signal ‘‘SC Violation’’
8

9 // Ensure equivalence to SC.
10 while ∃p′ 6= p(e) with not

B[p′][a(e)].empty():
11 B[p′][a(e)].removeFirst()
12 emit stc(p′, a(e))
13

14 // Execute e in PSO simulation.
15 prev[p(e)] := e
16 if e =st(p, a, v):
17 B[p][a].addLast(e)
18 emit st(p, a, v)
19 else if e =ld(p, a):
20 emit ld(p, a)
21 else if e =atm(p, a, f):
22 while not B[p][a].empty():
23 B[p][a].removeFirst()
24 emit stc(p, a)
25 emit atm(p, a, f)

Fig. 5. Monitoring algorithm for PSO

But first, Line 6 of monitorTSO(e), resp. monitorPSO(e), checks if we can
create a violation of sequential consistency by executing memory operation e in
the TSO (resp. PSO) simulation before committing any pending and conflicting
stores. That is, suppose e is an operation on address a by process p, and in our
simulated TSO (resp. PSO) execution there is a pending store e′ to a by process
p′ 6= p. In the TSO (resp. PSO) execution, we can force e →c e

′ by executing e
(and committing e, if it is a store) before committing e′. Further, suppose that e′

satisfies the rest of the condition at Line 6. That is, e′ →∗hb prev[p]—in the trace
of the SC execution, event e′ happens before the event prev[p] issued by process
p just before e. Then, as proved in Theorem 1, in the trace of the simulated TSO
(resp. PSO) execution we will have e′ →∗hb prev[p] →p e →c e

′. This is a cycle
in the →hb-relation, indicating that the simulated TSO (resp. PSO) execution
is not sequentially consistent.

In order to track the classic→∗hb relation on the trace of the SC execution that
we are monitoring, we use a well-known vector clock algorithm. The algorithm
has a time complexity of O(N · P) on a trace/execution of length N with P
processes. A short description of the algorithm can be found in, e.g., [11].

9

Theorem 1 Algorithms monitorTSO and monitorPSO are sound monitoring
algorithms for TSO and PSO, respectively. That is, whenever either reports a
violation of sequential consistency given an SC execution of a program P , then
P really has a violation of sequential consistency under TSO (resp. PSO).

Theorem 2 Algorithms monitorTSO and monitorPSO are complete for TSO
and PSO, respectively. That is, if program P has a violation of sequential con-
sistency under TSO (resp. PSO), then there exists some SC execution of P on
which monitorTSO (resp. monitorPSO) reports an SC violation.

Theorem 3 On a sequentially consistent execution of length N on P processes,
monitoring algorithms monitorTSO and monitorPSO run in time O(N · P).

We sketch the proofs of these results in the Appendix. Complete proofs can
be found in our accompanying technical report.

6 Comparison to SOBER

Our work is inspired by SOBER [4], a previous monitoring algorithm that detects
program executions under TSO that violate sequential consistency by examining
only SC executions. SOBER is derived from the axiomatic characterization of
relaxed memory model TSO, while we work from operational definitions of TSO
and PSO. There are four key differences between our work and SOBER.

First, we give monitor algorithms for detecting sequential consistency viola-
tions under both TSO and the more relaxed PSO memory model, while SOBER
detects only violations under TSO.

Second, the run-time complexity of our algorithms is O(N ·P), where P is the
number of processors and N is the length of the monitored SC execution. This
is an improvement over the complexity O(N ·P 2) of the SOBER algorithm. The
additional factor of O(P) in SOBER is from a vector clock algorithm to maintain
the relaxed happens-before relation, which axiomatically defines the behaviors
legal under TSO. In contrast, when working from our operational definitions for
TSO and PSO, there is no need for such additional vector clocks.

Third, the SOBER monitoring algorithm is more sensitive than our
monitorTSO. That is, for some programs there exist individual sequentially
consistent executions for which SOBER will report the existence of an SC viola-
tion while monitorTSO will not. However, this does not affect the completeness
of our monitoring algorithms—for such programs, there will always exist some
other SC execution on which monitorTSO will detect and report a violation of
sequential consistency. In our experimental evaluation, this reduced sensitivity
does not seem to hinder our ability to find violations of sequential consistency
when combining our monitors with preemption-bounded model checking [19].

Fourth, we believe that working with operational definitions for relaxed mem-
ory models TSO and PSO is both simpler than working with axiomatic defini-
tions and leads to more natural and intuitive monitoring algorithms. As evidence
for this belief, we note that we have discovered [8] a subtle error in the axiomatic

10

definition of TSO given in [4], which leads SOBER to fail to detect some real vi-
olations of sequential consistency under TSO. This error has been confirmed [7]
both by the authors of [4] and by [18]. We discuss this error, and how to correct
it, in our accompanying technical report.

7 Experimental Evaluation

In order to experimentally evaluate our monitor algorithms, we have imple-
mented monitorTSO and monitorPSO on top of the THRILLE [16] tool for
model checking, testing, and debugging parallel C programs.

In our experiments, we use seven benchmarks. The names and sizes of these
benchmarks are given in Columns 1 and 2 of Tables 1 and 2. Five are imple-
mentations of concurrent data structures taken from [3]: msn, a non-blocking
queue, ms2, a two-lock queue, lazylist, a list-based concurrent set, harris, a
non-blocking set, and snark, a double-ended queue (dequeue). The other two
benchmarks are implementations of Dekker’s algorithm and Lamport’s bakery
algorithm for mutual exclusion. Previous research [3, 4] has demonstrated that
the benchmarks have sequential consistency violations under relaxed memory
models without added memory fences. For each of the benchmarks we have
manually constructed a test harness.

In our experimental evaluation, we combine our monitoring algorithms
with THRILLE’s preemption-bounded [19] model checking. That is, we run
monitorTSO and monitorPSO on all sequentially consistent executions of each

inter- total distinct violations distinct violations
bench LOC leavings time under TSO under PSO

dekker 20 79 6.4 3 5

bakery 30 197 42.4 3 4

msn 80 92 7.5 0 3

ms2 80 123 11.0 0 2

harris 160 161 18.8 0 2

lazylist 120 139 14.0 0 4

snark 150 172 15.4 0 4

Table 1. Experimental evaluation of monitorTSO and monitorPSO on all interleav-
ings with up to 1 preemption.

inter- total distinct violations distinct violations
bench LOC leavings time under TSO under PSO

dekker 20 1714 180.0 9 11

bakery 30 13632 3992.4 3 4

msn 80 2300 196.1 0 3

ms2 80 3322 300.0 0 2

harris 160 5646 661.7 0 2

lazylist 120 4045 428.4 0 4

snark 150 6510 609.9 0 10

Table 2. Experimental evaluation on all interleavings with up to 2 preemptions.

11

benchmark with a bounded number of preemptive context switches. This ver-
ification is not complete—because we do not apply our monitor algorithms to
every SC execution, we may miss possible violations of SC under TSO or PSO.
We evaluate only whether our monitoring algorithms are effective in finding real
violations of SC when combined with a systematic but incomplete model checker.

We run two sets of experiments, one with a preemption bound of 1 and
the other with a preemption bound of 2. Columns 3 and 4 list the number
of parallel interleavings explored and the total time taken with a preemption
bound of 1 (Table 1) and a bound of 2 (Table 2). The cost of running our
unoptimized monitor implementations on every sequentially consistent execution
adds an overhead of roughly 20% to THRILLE’s model checking for the data
structure benchmarks and about 100% to the mutual exclusion benchmarks.

Rather than report every single parallel interleaving on which one of our
monitor algorithms signaled a violation, we group together violations caused by
the same pair of operations e and e′. We say that a violation is caused by e and
e′ when monitorTSO(e) or monitorPSO(e) is the call on which a violation is
signaled, and e′ is the conflicting memory access identified in the condition at
Line 6. For such a violation, e′ happens before the event prev[p(e)] just before
e in process p(e), but event e also happens before e′ because we delay store e′

until after e completes in the violating TSO or PSO execution.
Columns 4 and 5 of Tables 1 and 2 list the number of such distinct violations

of sequential consistency found under TSO and PSO in our experiments. Note
that we find no violations of sequential consistency under TSO for any of the
data structure benchmarks. Their use of locks and compare-and-swap operations
appear to be sufficient to ensure sequential consistency under TSO. On the other
hand, we find violations of sequential consistency for all benchmarks under PSO.

Acknowledgments We would like to thank Krste Asanović, Pallavi Joshi,
Chang-Seo Park, and our anonymous reviewers for their valuable comments.
This research supported in part by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C. Discovery (Award #DIG07-
10227), by NSF Grants CNS-0720906, CCF-1018729, and CCF-1018730, and
by a DoD NDSEG Graduate Fellowship. Additional support comes from Par
Lab affiliates National Instruments, NEC, Nokia, NVIDIA, Samsung, and Sun
Microsystems.

References

1. Arvind, A., Maessen, J.W.: Memory model = instruction reordering + store atom-
icity. In: ISCA ’06: Proceedings of the 33rd annual international symposium on
Computer Architecture. pp. 29–40. IEEE Computer Society (2006)

2. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification
problem for weak memory models. In: The 36th annual ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages (POPL) (2010)

3. Burckhardt, S., Alur, R., Martin, M.M.K.: CheckFence: checking consistency of
concurrent data types on relaxed memory models. In: ACM SIGPLAN conference
on Programming Language Design and Implementation (2007)

12

4. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In: CAV ’08: Proceedings of the 20th international conference on Computer
Aided Verification (2008)

5. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. Tech. Rep. MSR-TR-2008-12, Microsoft Research (2008)

6. Burckhardt, S., Musuvathi, M.: Memory model safety of programs. In: (EC)2:
Workshop on Exploting Concurrency Efficiently and Correctly (2008)

7. Burckhardt, S., Musuvathi, M.: Personal communcation (2010)
8. Burnim, J., Sen, K., Stergiou, C.: Sound and complete monitoring of sequential

consistency in relaxed memory models. Tech. Rep. UCB/EECS-2010-31, EECS
Department, University of California, Berkeley (Mar 2010), http://www.eecs.

berkeley.edu/Pubs/TechRpts/2010/EECS-2010-31.html

9. Dill, D.L., Park, S., Nowatzyk, A.G.: Formal specification of abstract memory
models. In: Symposium on Research on Integrated Systems (1993)

10. Flanagan, C., Freund, S.N.: Adversarial memory for detecting destructive races.
In: ACM SIGPLAN conference on Programming Language Design and Implemen-
tation (PLDI) (2010)

11. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Proc. of the 32nd Symposium on Principles of Programming Lan-
guages (POPL’05). pp. 110–121 (2005)

12. Gibbons, P., Korach, E.: The complexity of sequential consistency. In: Fourth IEEE
Symposium on Parallel and Distributed Processing. pp. 317–235 (1992)

13. Gopalakrishnan, G., Yang, Y., Sivaraj, H.: QB or not QB: An efficient execution
verification tool for memory orderings. In: In Computer-Aided Verification (CAV),
LNCS 3114 (2004)

14. Higham, L., Kawash, J., Verwaal, N.: Weak memory consistency models. part i:
Definitions and comparisons. Tech. Rep. 97/603/05, Department of Computer Sci-
ence, The University of Calgary (1998)

15. Huynh, T.Q., Roychoudhury, A.: Memory model sensitive bytecode verification.
FMSD 31(3), 281–305 (2007)

16. Jalbert, N., Sen, K.: A trace simplification technique for effective debugging of
concurrent programs. In: The 18th ACM SIGSOFT international symposium on
the Foundations of Software Engineering (SIGSOFT 10/FSE-18) (2010)

17. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

18. Mador-Haim, S., Alur, R., Martin, M.M.: Generating litmus tests for contrasting
memory consistency models. In: CAV ’10: Proceedings of the 22nd international
conference on Computer Aided Verification (Jul 2010)

19. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: PLDI ’07: Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and implementation. ACM (2007)

20. Park, S., Dill, D.L.: An executable specification, analyzer and verifier for RMO
(relaxed memory order). In: ACM symposium on Parallel algorithms and architec-
tures. pp. 34–41. ACM (1995)

21. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

22. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share
memory. ACM Trans. Program. Lang. Syst. 10(2), 282–312 (1988)

23. SPARC International: The SPARC architecture manual (v. 9). Prentice-Hall (1994)

13

A Soundness and Completeness Proof Sketches

We sketch here proofs of the soundness and completeness of our monitoring
algorithms. Complete proofs can be found in our accompanying technical report.

Theorem 1 Algorithms monitorTSO and monitorPSO are sound monitoring
algorithms for TSO and PSO, respectively.

Proof (sketch). Let (σ0,m0)
e1,r1−−−→ · · · en,rn−−−→ (σn,mn) be an SC execution of a

program P such that monitorTSO (resp., monitorPSO), on this execution, first
signals “Sequential Consistency Violation” on event en. We prove that P has an
execution under TSO (resp., PSO) with a non-sequentially-consistent trace.

Observe that, during its execution, monitorTSO (resp., monitorPSO) emits
labels from Event and τTSO (resp., τPSO). We can show:

(1) That the events emitted during the first n− 1 calls to monitorTSO (resp.,
monitorPSO) form a TSO (resp., PSO) execution of program P . Further,
this execution has the same trace as the SC execution.
We can show that the emitted stc transitions ensure that the loads and
atomic operations in the TSO (resp., PSO) execution see the same values as
in the SC execution. Thus, program P behaves identically.

(2) That operation en can be performed in this TSO (resp., PSO) execution in
a way that creates a trace with a cycle in its →hb-relation.
In the emitted TSO (resp., PSO) execution, the event e′ in the condition
at Line 6 is still pending. Thus, we can perform e (and commit it, if it is a
store) before e′ commits, so that e →c e

′. And e′ →∗hb prev[p(e)] because
the emitted execution has the same trace as the SC execution e1, . . . , en−1.
Thus, we create a TSO (resp., PSO) execution with happens-before cycle:

e′ →∗hb prev[p(e)] →p e →c e′

Theorem 2 Algorithms monitorTSO and monitorPSO are complete monitor-
ing algorithms for TSO and PSO, respectively.

Proof (sketch). Suppose (s0,m0)
l1−→ · · · ln−→ (sn,mn) is a TSO (resp., PSO)

execution of program P with a trace (E,→p, src,→st) that is not sequentially
consistent. Recall that each li is either a memory event from Event or an internal
transition stc(p) for TSO or stc(p, a) for PSO.

We can obtain shorter TSO (resp., PSO) executions of P by removing some
Event-labeled transition from the execution l1, . . . , ln, as well as possibly remov-
ing corresponding stc transitions. For example, we can safely remove the last
Event issued by any process p, even if it is not last in the execution, as long as
it does not write a value that is read by a later operation.

We use this freedom to construct a shorter TSO (resp., PSO) execution that
is a minimal violation of sequential consistency. That is, if any further Event ’s
are removed, the trace of the execution becomes sequentially consistent.

On this minimally-violating execution, consider the Event ’s that can be safely
removed—i.e. their removal leaves a valid TSO (resp., PSO) execution, but this

14

execution has an SC trace. For such a safely-removable e, let last(e) denote the
last write to a(e) to become globally visible in the TSO (resp., PSO) execution,
not including e itself. In the TSO (resp., PSO) execution e→c last, but we would
have last(e) →∗hb e in the SC execution in which e is removed and then run at
the end. We can show that, for at least one of the these e, no other event comes
after last(e) in any SC trace and also forces last(e) to be committed before event
e executes. Thus, monitorTSO/PSO(e) reports a violation on this execution.

B Complexity of Monitoring Algorithms

Lemma 1. During the execution of monitorTSO (respectively, monitorPSO),
for each address a ∈ Adr, at any given time at most one process p ∈ Proc will
have pending stores to address a in its write buffer B[p] (resp., B[p][a]).

Proof (by induction). Initially, before any calls to monitorTSO (resp.,
monitorPSO), the lemma clearly holds.

Suppose the lemma holds after k calls to monitorTSO (resp., monitorPSO),
and let monitorTSO(e) or monitorPSO(e) be the (k + 1)-st call. If e is not a
store, or if e = st(p, a, v) where no other process p′ 6= p has any pending stores
to a, then the lemma clearly holds during and after the call.

Suppose instead that e = st(p, a, v) and process p′ 6= p is the only process
with pending stores to address a. Then, in monitorTSO (resp., monitorPSO),
the while-loop at Lines 10–12 commits all such pending stores by p′ before Line
17 adds a pending store to a to a write buffer of process p.

By Lemma 1, in the condition at Line 6 in monitorTSO(e) and
monitorPSO(e) at most one processor p′ can have pending writes to a(e).

We further observe that monitorTSO and monitorPSO remain complete if,
at Line 6, we check this condition with only the last (i.e. most recent) pending
store to a in B[p′] or B[p′][a]. See the proof of Theorem 2 for details.

Theorem 3 On a sequentially consistent execution of length N on P processes,
monitoring algorithms monitorTSO and monitorPSO run in time O(N · P).

Proof. We show that each call monitorTSO/PSO(e) runs in amortized O(P)
time, yieldingO(N ·P) total time. As mentioned in the previous section, updating
the vector clocks to maintain the happens-before relation on the monitored SC
execution requires O(P) time per call to monitorTSO/PSO(e).

For each address a ∈ Adr, we track the single process p which has pending
stores to a. Further, for a we maintain a pointer into the FIFOQueue of this pro-
cess to the last (i.e. most recent) pending store to a. We can maintain these two
pieces of per-address information in O(1) time per call to monitorTSO/PSO(e).
Using this information, checking the condition at Line 6 requires O(1) time to
find the last pending store to a(e) and O(1) time to check e′ →∗hb e. The condition
at Line 10 can similarly be checked in O(1).

Finally, the total number of iterations of the while-loops at Lines 10 and 22,
across all N calls to monitorTSO/PSO(e), cannot exceed O(N) as we buffer no
more than N writes.

15

