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ABSTRACT
High-performance concurrent libraries, such as lock-free data
structures and custom synchronization primitives, are notoriously
difficult to write correctly. Such code is often implemented with-
out locks, instead using plain loads and stores and low-level opera-
tions like atomic compare-and-swaps and explicit memory fences.
Such code must run correctly despite the relaxed memory model of
the underlying compiler, virtual machine, and/or hardware. These
memory models may reorder the reads and writes issued by a
thread, greatly complicating parallel reasoning.

We propose RELAXER, a combination of predictive dynamic
analysis and software testing, to help programmers write correct,
highly-concurrent programs. Our technique works in two phases.
First, RELAXER examines a sequentially-consistent run of a pro-
gram under test and dynamically detects potential data races. These
races are used to predict possible violations of sequential consis-
tency under alternate executions on a relaxed memory model. In
the second phase, RELAXER re-executes the program with a biased
random scheduler and with a conservative simulation of a relaxed
memory model in order to create with high probability a predicted
sequential consistency violation. These executions can be used to
test whether or not a program works as expected when the underly-
ing memory model is not sequentially consistent.

We have implemented RELAXER for C and have evaluated it
on several synchronization algorithms, concurrent data structures,
and parallel applications. RELAXER generates many executions of
these benchmarks with violations of sequential consistency, high-
lighting a number of bugs under relaxed memory models.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification;
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Reliability, Verification
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1. INTRODUCTION
In a multithreaded program, a data race occurs when two threads

simultaneously access the same shared variable and at least one
of the accesses is a write. Data races are the most common and
notorious kind of concurrency bug. The conventional wisdom is
that programmers should use synchronization mechanisms such as
locks to ensure that their programs contain no data races, and a
large body of research over the past thirty years has focused on
detecting data races in parallel programs.

Yet software developers often write programs with intentional
data races. Highly-concurrent libraries, such as lock-free data
structures and custom synchronization operations, may contain in-
tentional data races for performance. Such code uses compare-and-
swap-like primitives or unsynchronized reads and writes to avoid
the overhead of locks. Additionally, developers of large applica-
tions often introduce data races to avoid the cost of synchronization
on certain frequent operations.

The presence of explicit data races, however, greatly increases
the difficulties of writing correct parallel software. In addition to
the normal challenges of reasoning about thread interleavings and
of nondeterminism in testing and debugging, data races expose the
programmer to the underlying relaxed memory model of the lan-
guage and hardware. Under such relaxed memory models, a pro-
gram can exhibit a wide range of counter-intuitive behaviors that
can be quite difficult to reason about.

Consider the example program in Figure 1. The program has two
data races—the write of x at Line 1 races with the read of x at Line
4, and the write of y at Line 3 races with the read of y at Line 2.
Under sequential consistency, the final assertion will always hold.
Either the statement at Line 2 or at Line 4 is the last to execute, so at
least one of them must see an earlier write of 1. But, in the absence
of any synchronization, most relaxed memory models permit the
writes to x and y to be delayed or reordered so that they occur
after the reads at Lines 2 and 4. Thus, the final values of t1 and t2
can both be 0. That is, these seemingly benign data races can lead
to an error under a relaxed memory model.

Thus, there is a need for techniques and tools to aid developers
in writing and testing high-performance parallel software with in-

Initially: x = y = 0;

thread1: thread2:
1: x = 1; 3: y = 1;
2: t1 = y; 4: t2 = x;

assert(t1 == 1 || t2 == 1);

Figure 1: Program with error under relaxed memory model
TSO, but correct with sequentially-consistent memory.
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tentional data races. While there exist many tools to help program-
mers find and reproduce data races in their programs, few address
the challenges of ensuring program correctness when these races
expose violations of sequential consistency. Recently, there have
been a number of efforts to verify and model check concurrent pro-
grams on relaxed memory models [6, 20, 9, 28, 3, 10, 4]. Some
of these techniques [9, 28, 3] encode a program as well as the ax-
iomatic semantics of the underlying memory model as a constraint
system and use a constraint solver to find bugs. Other techniques [6,
20, 10] explicitly explore the state space of a program to find bugs.
More recently, SOBER [4] and [5] have been proposed for run-time
monitoring of sequentially consistent executions to find violations
of sequential consistency on “nearby” executions. Although these
techniques scale and find bugs, they must be driven by a model
checker to encounter executions which come close to violating se-
quential consistency. Moreover, violations of sequential consis-
tency are not necessarily always bugs in, e.g., highly-concurrent
data structures.

In this paper, we propose an active testing technique, RELAXER,
to detect bugs under relaxed memory models. Active testing [22] is
a two-phase analysis and testing approach for predicting and con-
firming concurrency bugs. Active testing techniques have been
developed for detecting real data races [22, 13], atomicity viola-
tions [19, 13], and deadlocks [11]. In the first phase of active test-
ing, a static or dynamic analysis is used to predict potential concur-
rency bugs in a test program—e.g. pairs of statements that could be
data races. In the second phase, for each potential concurrency bug,
the test program is executed with the analysis actively controlling
the thread schedule to cause the bug to occur. A concurrency bug is
reported to the user only if it is observed in some execution during
the second phase—e.g. if a pair of potentially-racing statements
actually race in a created execution.

Applying active testing in RELAXER to find relaxed memory
model bugs poses several challenges. For the first phase of RE-
LAXER, we must devise an analysis to predict violations of sequen-
tial consistency in a test program. We use the existing notion of a
happens-before cycle to characterize a violation of sequential con-
sistency and formalize a potential happens-before cycle as a se-
quence of potential data races. We propose a simple dynamic analy-
sis that, given a sequentially-consistent execution of a test program,
predicts such cycles. In the second phase, RELAXER attempts to
create each potential happens-before cycle by running the test pro-
gram while actively controlling not only the thread scheduler but
also the underlying memory model. This enables RELAXER to cre-
ate feasible potential cycles with high probability and to test if the
resulting sequential consistency violations lead to real bugs.

In order to control the underlying memory model, the second
phase of RELAXER requires an operational implementation of each
relaxed memory model under consideration. In this paper, we con-
sider three memory models, Total Store Order (TSO) [24] and
Partial Store Order (PSO) [24], and Partial Store Load Order
(PSLO)[16]. TSO allows to delay a store relative to subsequent
loads on a processor. The operational model of TSO uses a store
buffer for each processor. This memory model is quite similar to
that of the x86 architecture. PSO additionally allows to delay stores
relative to other stores to different addresses on the same processor.
The operational model of PSO is implemented by using a separate
buffer for each address per processor. These write-write reorder-
ings are present in many architectures, including Alpha, IA64, and
POWER. PSLO captures some of the behaviors of SPARC’s Re-
laxed Memory Order (RMO) [24] and other very relaxed memory
models like Alpha, IA64, and POWER. PSLO is like PSO, but ad-
ditionally allows loads to be reordered to before previous loads and

stores on the same processor. The operational model of PSLO is
implemented by keeping a per-thread store history for each address.

RELAXER has several advantages:
• RELAXER provides conservative implementations of the

operational semantics of various relaxed memory models.
These operational models are often intuitive to understand
and debug. With RELAXER, a programmer can plug-in an
implementation of a relaxed memory model and observe the
actual run-time behavior of a program under the model. This
can be useful for testing and debugging.
• RELAXER can help distinguish harmful violations of sequen-

tial consistency from benign ones. RELAXER, after creating
a happens-before cycle, completes the test execution to check
for any crashes or functional errors. Further, it produces exe-
cution traces that can be used to help debug any errors found.
• RELAXER can quickly trigger memory model related bugs

even though such bugs often happen only under rare sched-
ules and memory operation reorderings. RELAXER does this
by predicting potential happens-before cycles and guiding
the execution of the program to create the cycles with high
probability.

We have implemented RELAXER for C programs and applied
it to two mutual exclusion algorithms and several concurrent data
structures and parallel applications. Our implementation intercepts
all loads, stores, fences, and other memory operations, providing
debuggable simulations of these operations under various relaxed
memory models. RELAXER rapidly predicts and then creates many
executions for these benchmarks in which sequential consistency
is violated. Further, RELAXER creates many executions in which
violations of sequential consistency lead to program errors, high-
lighting bugs in the benchmarks under relaxed memory models.

2. OVERVIEW
In this section, we give an informal overview of RELAXER on a

simple example.
Consider the parallel program in Figure 2. Under a sequentially

consistent memory model, this program cannot encounter the ER-
ROR at line 6. However, under many relaxed memory models pro-
vided by current multiprocessor systems, the ERROR can be en-
countered. We describe in Section 2.1 exactly how a violation of
sequential consistency can lead to this error under the Partial Store
Order (PSO) model. And in Section 2.2, we describe how RE-
LAXER characterizes these violations using happens-before cycles
and data races.

In Sections 2.3 and 2.4, we describe how RELAXER uncovers an
execution of our example program exhibiting this ERROR. As an
active testing technique, RELAXER consists of two phases. In the
first phase (Section 2.3), RELAXER examines a sequentially con-
sistent execution of the example program and predicts possible vi-
olations of sequential consistency under PSO. In the second phase
(Section 2.4), RELAXER executes the test program under PSO, bi-
asing the program’s thread schedule and the underlying memory
model to produce executions in which the predicted violations ac-
tually occur.

2.1 Error Under Partial Store Order (PSO)
Consider the parallel program in Figure 2. In reasoning about

parallel programs, we typically assume sequential consistency.
That is, we think of the program’s execution as simply interleav-
ing the operations of each thread. Under sequential consistency,
the ERROR on Line 6 cannot occur, because there is only a single
interleaving in which thread2 reads done=1 at Line 4. And in
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Initially: x = y = done = 0;

thread1 { thread2 {
4: if (done) {

1: x = 1; 5: if (x==0)
2: y = 1; 6: ERROR;
3: done = 1; 7: local = y;

8: }

Figure 2: A program correct under sequential consistency,
but with an error under relaxed memory model PSO.

this interleaving, thread1 executes completely before thread2,
and thus x will not be zero at Line 5.

Our example program has additional behaviors, however, under
many relaxed memory models that are provided by current mul-
tiprocessor systems. For example, the Partial Store Order (PSO)
model allows some stores by a thread to be delayed, only becom-
ing visible to other threads at some later time, while the thread
continues to execute statements. As we formalize in Section 4.2,
we can understand PSO as if every thread maintained a FIFO store
buffer for each memory address. Then, a possible execution of the
program in Figure 2 is the following:

1. thread1 executes Line 1, but rather than write x=1 directly
to shared memory, the store x=1 is buffered in thread1’s
store buffer for x.

2. thread1 executes Lines 2 and 3, writing y=1 and done=1
to shared memory.

3. thread2 executes Line 4, reading done=1.
4. thread2 executes Line 5, reading x=0.
5. thread1 commits its buffered store x=1. That is, it now

writes x=1 to shared memory so that it is globally visible.
6. thread2 encounters the ERROR at Line 6.

Note that to fix such an error, it is necessary to introduce some
kind of synchronization or memory barrier to prevent the writes of
x=1 and done=1 from being reordered.

2.2 Happens-Before Cycles and Races
To convince ourselves that the above behavior is a violation of

sequential consistency (SC), we note that, under SC, we could rea-
son as follows about causality among the executed statements:

• The store x=1 at Line 1 must have happened before1 the
store done=1 at Line 3, because the stores are from the same
thread and x=1 is performed first.
• The store done=1 at Line 3 must have happened before the

load of done at Line 4, because Line 4 reads the value writ-
ten by Line 3.
• The load of done at Line 4 must have happened before the

load of x at Line 5, because the loads are from the same
thread and Line 4 is performed first.
• The load of x at Line 5 must have happened before the store
x=1 at Line 1, because Line 5 reads the initial value 0 for x
rather than the value written by Line 1.

But these arguments imply a happens-before cycle: Line 1 hap-
pens before Line 3, which happens before Line 4, which happens
before Line 5, which happens before Line 1. Such a cycle is a
contradiction—Line 1 cannot have happened before itself—which
shows that this behavior is not sequentially consistent.

1We formally define this happens-before relationship in Section 3.

Note that, in this happens-before cycle:

Line 1 −→p Line 3 −→c Line 4 −→p Line 5 −→c Line 1

the edges alternate between: (1) edges from one statement to an-
other by the same thread (program order, indicated by→p), and (2)
edges from one statement to another statement accessing the same
variable in a different thread (conflict order, indicated by→c).

In particular, the→c happens-before edges involve pairs of state-
ments that form data races. This violation of sequential consis-
tency is possible because of the two data races between thread1
and thread2—one on x between Lines 1 and 5 and one on done
between Lines 3 and 4. These races can lead to an SC violation be-
cause the variables involved are accessed in opposite order by the
two threads: thread1writes x before done, but thread2 reads
x after done.

We show in Section 4 that this pattern of happens-before rela-
tionships, alternating between races and same-thread ordering, cap-
tures all violations of sequential consistency.

2.3 Phase I of RELAXER

In the first phase, RELAXER examines a sequentially consistent
execution of our example program and uses a dynamic analysis to
predict potential violations of sequential consistency. In the sec-
ond phase, described in the next section, RELAXER will attempt to
create executions actually exhibiting these violations.

Given a sequentially consistent trace of a test program, RE-
LAXER’s predictive dynamic analysis identifies program statements
that could potentially form a happens-before cycle in a run under a
relaxed memory model. As discussed in the previous section, such
happens-before cycles are violations of sequential consistency.

Suppose that RELAXER observes the sequentially consistent exe-
cution where thread1 runs completely and then thread2 runs.
RELAXER first performs a standard dynamic race detection analy-
sis, finding three data races—pairs of accesses to the same memory
location from different threads, with at least one access a write and
without any synchronization ordering the accesses:

1: x = 1 and 5: read x

2: y = 1 and 7: read y

3: done = 1 and 4: read done

Although the observed execution cannot have any actual
happens-before cycles, because it is sequentially consistent, RE-
LAXER reports two potential happens-before cycles:

Line 1 −→p Line 3 −→r Line 4 −→p Line 5 −→r Line 1
Line 2 −→p Line 3 −→r Line 4 −→p Line 7 −→r Line 2

These potential happens-before cycles are like happens-before
cycles, in that the→p edges indicate happens-before between pairs
of executed statements from the same thread. But the→r are only
potential happens-before—e.g., “Line 5 −→r Line 1” indicates
that Lines 1 and 5 are a data race and that, in some execution un-
der a relaxed memory model such as PSO, it could be the case that
Line 5 happens-before Line 1. (But in the observed SC execution,
Line 5 does not happen-before Line 1.)

2.4 Phase II of RELAXER

For each of the two potential happens-before cycles from Phase I,
RELAXER will attempt to create executions under the relaxed mem-
ory model PSO in which these cycles are actual happens-before
cycles and thus violate sequential consistency.

As described in Section 2.1, under PSO threads are free to locally
“buffer” writes to shared memory, deferring the actual write until
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later. RELAXER uses this freedom, in combination with control
over the thread scheduler, to create happens-before cycles.

For the first potential happens-before cycle, on Lines 1, 3, 4,
and 5, RELAXER will begin executing our example program. But
RELAXER intercepts every shared read and write of the program
in order to control the program’s thread schedule and to simulate
the possible PSO behaviors. RELAXER’s goal is to ensure that
both Line 3 happens-before Line 4 and that Line 5 happens-before
Line 1, creating a happens-before cycle and violating sequential
consistency. Suppose thread2 is first to execute a statement:

1. Just before thread2 reads done at Line 4, RELAXER will
pause thread2, because Line 3 is supposed to happen-
before Line 4.

2. Then, when thread1 writes x=1 at Line 1, RELAXER in-
tercepts this write and buffers it in thread1’s store buffer
for x, because the read at Line 5 is supposed to happen-
before this store.

3. RELAXER then lets thread1 execute Lines 2 and 3 nor-
mally, and then allows thread2 to resume.

4. thread2 then executes Line 4, which see the write
done=1 from Line 3, and then executes Line 4, which does
not see the write x=1 from Line 1 because that write is still
buffered. Line 4 thus reads 0 for x.

5. thread1 then commits its buffered store x=1.

RELAXER has now created the predicted happens-before cycle:

Line 1 −→p Line 3 −→c Line 4 −→p Line 5 −→c Line 1

RELAXER then allows the program to continue its execution nor-
mally in order to observe whether any errors occur. The execution
soon encounters the ERROR at Line 6. RELAXER outputs this trace
as an execution possible under memory model PSO which not only
violates sequential consistency (SC), but leads to a program error.

RELAXER similarly creates an SC violation involving the second
potential happens-before cycle by delaying the write to y. This
execution, however, does not lead to an error. If the test program is
fully equipped with assertions to detect incorrect program behavior,
then the programmer need not examine the execution traces when
all assertions pass. RELAXER can thus test that programs behave
as expected under various relaxed memory models.

3. FORMAL BACKGROUND
Before formally describing the RELAXER algorithm, we for-

mally define (along the lines of [4]) execution traces of parallel
programs, the happens-before relation discussed in the previous
section, and sequential consistency.

3.1 Execution Traces
The axiomatic semantics of various memory models are de-

scribed in terms of an execution trace of a program, which is a
sequence of events. The events of a trace are:

• ld(l, p, a, v, i, c), denoting a load of the value v from mem-
ory address a by processor p. The load is the ith instruction
executed by processor p according to the program order and
it returns the cth value written to the address a. i is called the
instruction index and c is called the commit index. l is the
label of the instruction (same for below),
• st(l, p, a, v, i, c), denoting a store of the value v at the mem-

ory address a by processor p. The store is the ith instruction
executed by processor p according to the program order and
it is the cth value written to the address a.

We use corresponding projection functions l(e), p(e), a(e),
v(e), i(e), c(e) for an event e, and use o(e) to denote the type
of e—i.e. ld or st. A trace is generated from a concurrent program
execution by logging all loads and stores.

3.2 Sequential Consistency
In order to define a sequentially consistent execution, we define

two relations on the set of events.
Events e and e′ are related by the program-order relation, de-

noted by e →p e′, iff t(e) = t(e′) and i(e) ≤ i(e′). That is,
e →p e′ when either e = e′ or e and e′ are events from the same
thread and that thread issues e before e′

Two events e, e′ are related by the conflict-order relation, de-
noted by e →c e′, iff a(e) = a(e′) and either (1) o(e′) = st and
c(e) < c(e′), or (2) o(e) = st and o(e′) = ld and c(e) ≤ c(e′).
Informally, e→c e′ means that e and e′ are operations on the same
memory location and e happened first from the point of view of that
memory location.

The classic happens-before relation is defined as follows:

→hb= (→p ∪ →c)

Then, we define a trace to be sequentially consistent in terms of
the happens-before relation:

DEFINITION 1. A trace T is sequentially consistent if →hb is
acyclic on the events in T .

Note that this condition is equivalent to requiring the existence
of a total ordering on the events in T that is consistent with the
happens-before relation.

Given Definition 1 above, we can say that a trace generated un-
der a relaxed memory model violates sequential consistency iff
the trace contains a cycle under the classic happens-before rela-
tion →hb . Thus, such a happens-before cycle is a witness to the
violation of sequential consistency.

4. ALGORITHM
In this section, we provide a full description of the RELAXER

algorithm. We assume that we are given a concurrent test harness, a
closed program with fixed inputs and assertions checking its output.

RELAXER works in two phases. In the first phase, described
in Section 4.1, RELAXER runs the test harness on random sched-
ules on the sequentially consistent memory model and observes the
various memory load and store events. RELAXER analyzes these
events to find sets of events such that the events in each set could
form a cycle in the happens-before relation in some other poten-
tially feasible schedule.

In the second phase, for each such set of events, RELAXER ex-
ecutes the program again and actively controls the schedule and
memory operations so that the cycle in the happens-before relation
gets created with reasonable probability. RELAXER also checks
if the assertions in the harness could be violated in the controlled
execution; if a violations happens, then RELAXER reports the error
along with a concrete execution trace for the purpose of debugging.

The second phase of RELAXER is parameterized by the memory
model on which we are testing. In particular, RELAXER requires
operational semantics for a memory model so that it can simulate
the model during testing. RELAXER’s strategy for controlling the
schedule and the behavior of memory operations is then specific to
each memory model.

Thus, we describe in Section 4.2 our operation models for three
relaxed memory models: TSO, PSO, and PSLO. Then in Sec-
tion 4.3 we describe Phase II of RELAXER on each model.
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Algorithm 1 Phase I of RELAXER

1: INPUTS: a trace
2: i⇐ 1
3: Ci ⇐ {e, e′ | e→p e′}
4: while Ci 6= ∅ do
5: for each e in the trace and each c in Ci do
6: if c, e is a chain
7: if i is even and c, e is a potential→hb-cycle
8: report l(c, e)
9: else

10: add c, e to Ci+1

11: i⇐ i+ 1

4.1 Phase I of RELAXER

In Phase I, RELAXER predicts set of events which could be in-
volved in a potential cycle of the happens-before relation.

For prediction, RELAXER generates a trace of the concurrent
program under test by running it on a random thread schedule and
on a sequentially consistent memory. Note that we do not address
here the problem of executing the test program on a random sched-
ule. There exists much prior work on generating thread schedules
for testing concurrent software, including noise making [7, 25], ac-
tive random scheduling [22, 13], or model checking [27, 17].

We focus only on the problem of predicting potential cycles
given an execution trace. For such a trace, RELAXER looks for a
sequence of events, not necessarily adjacent in the trace, that form
a potential→hb-cycle:

DEFINITION 2. A sequence of events e1, e
′
1, e2, e

′
2, . . . en, e

′
n

is called a→hb-chain iff
• ∀j ∈ [1, n], ej →p e′j ,
• ∀j, k ∈ [1, n], p(ej) 6= p(ek),
• ∀j ∈ [1, n − 1], e′j and ej+1 are in potential data race,

i.e. p(e′j) 6= p(ej+1), a(e′j) = a(ej+1), and o(e′j) = st ∨
o(ej+1) = st

DEFINITION 3. A sequence of events e1, e
′
1, e2, e

′
2, . . . en, e

′
n

is called a potential→hb-cycle iff it is a→hb-chain and e′n and e1
are in potential data race.

Note that in a potential →hb-cycle, for any j ∈ [1, n − 1], ei-
ther e′j →c ej+1 or ej+1 →c e′j in the trace. Similarly, either
e′n →c e1 or e1 →c e′n. Note that the potential→hb-cycle cannot
be a real cycle on the happens-before relation of the current trace
as the trace is being generated by running the program on a sequen-
tially consistent memory model. However, since e′n and e1 are in
potential data race and ∀j ∈ [1, n−1], e′j and ej+1 are in potential
data race, we could expect that one can execute the program in a
controlled way on a relaxed memory model where e′n →c e1 and
∀j ∈ [1, n−1], e′j →c ej+1 and thereby creating a real→hb-cycle.
In Phase II, RELAXER tries to create such cycles by executing the
program in a controlled way on a relaxed memory model.

m : array[Adr] of V

l: s t o r e SC(p,a,v):
m[a] = v

l: loadSC(p,a):
re turn m[a];

l:CASSC(p,a,oldv,newv):
i f (m[a] == oldv)
m[a] = newv

Figure 3: Operational Model of SC

For each sequence of events c = e1, e
′
1, e2, e

′
2, . . . en, e

′
n that

forms a potential →hb-cycle, RELAXER records the sequence
l(e1), l(e

′
1), l(e2), l(e

′
2), . . . l(en), l(e

′
n). Let us denote this se-

quence of events by l(c). At the end of Phase I, RELAXER reports
a set of sequences of instruction labels. RELAXER uses the reports
from Phase I in Phase II to try to create those cycles and to check
if there could be an error due to the created cycle.

Given a trace, RELAXER computes all potential →hb-cycles as
follows: Let Cn be the set of all →hb-chains of length n. RE-
LAXER computes potential →hb-cycles by iteratively computing
C1, C2, C3, C4 . . . and finding potential→hb-cycles in those sets.
This iterative algorithm is listed in Algorithm 1.

Note that in the algorithm, we do not add a→hb-chain to Ci+1 if
it is a potential hb-cycle. This ensures that we do not report→hb-
cycles that can be decomposed into simpler cycles. Moreover, in
Algorithm 1, a potential →hb-cycle of length 2k gets reported k
times. For example, if e1, e

′
1, e2, e

′
2, . . . , en, e

′
n is reported as a

potential→hb-cycle, then e2, e
′
2, . . . , en, e

′
n, e1, e

′
1 is also reported

as a cycle. We remove all such duplicates.

4.2 Operational Models
In this section, we describe our operational models for the three

relaxed memory models, TSO, PSO, and PSLO, to which RE-
LAXER has been applied. Note that our operational implementa-
tions are a conservative approximation of the full relaxed memory
models. Every behavior our operational semantics generate is al-
lowed by the full memory model, so we report only true bugs and
violations of sequential consistency.

In these models, a program consists of a set of parallel pro-
cesses that issue memory operations such as loads, stores, atomic
compare-and-swaps, and memory barriers. A memory model im-
plements these operations, deciding what values are returned to a
process whenever it performs a load.

Sequential Consistency (SC).
As a point of comparison, we present in Figure 3 a simple

operational model for sequential consistency (SC). In SC, mem-
ory is modeled as an array m mapping addresses a ∈ Adr to

m : array[Adr] of V
B : array[Proc] of FIFOQueue of Adr×V

l: s t o r e TSO(p,a,v):
B[p].addLast((a,v))

s t o r e c
TSO(p):

(a,v) = B[p].removeFirst()
m[a] = v

l: loadTSO(p,a):
i f (B[p].contains((a,*))
(a,v) = last element (a,*) of B[p]
re turn v

e l s e
re turn m[a]

l:CASTSO(p,a,oldv,newv):
membarslTSO(p)
i f (m[a] == oldv)
m[a] = newv

l:membarslTSO(p):
whi le (not B[p].empty())

s t o r e c
TSO(p)

Figure 4: Operational Model of TSO
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data values v ∈ V. storeSC(p,a,v) stores value v at
m[a], loadSC(p,a) returns the value stored at m[a], and
CASSC(p,a,oldv,newv) is an atomic compare-and-swap on
m[a]. Each function in our operational model executes atomically.

Total Store Order (TSO).
The TSO memory model [24] allows stores to be reordered past

later loads, but maintains a total order over stores. To maintain
intra-thread consistency, when a store is reordered past a load of
the same address, the load still sees the stored value.

Our operational model for TSO is given in Figure 4. We add
a FIFOQueue B[p] as a store buffer for each process. Instead
of directly updating memory, storeTSO(p,a,v) enqueues the
pair (a,v) to the local buffer B[p]. storec

TSO(p) is an inter-
nal transition that commits to global memory the oldest buffered
store for process p. The memory model can non-deterministically
call storec

TSO(p) any number of times at any state of the exe-
cution. loadTSO(p,a) reads from main memory unless there is
a pending store to a in B[p], in which case it returns the value of
the most recent pending store.

We implement store-load memory barrier membarsl
TSO(p) by

committing all pending stores. Following the SPARC v9 descrip-
tion [24] of TSO, we do not allow compare-and-swaps to be re-
ordered under TSO. We enforce this by including a store-load
memory fence in CASTSO(p,a).

Partial Store Order (PSO).
The PSO memory model [24] is similar to TSO, but further al-

lows stores to reordered past later stores to different addresses.
Our operational model for PSO is given in Figure 5. As in SC

and TSO, PSO maintains a global memory m. PSO also main-
tains a store buffer Ba[p][a] for each process p and address
a. storePSO(p,a,v) enqueues v to the buffer Ba[p][a].
storec

PSO(p,a) is an internal transition that commits to global
memory the oldest buffered store of process p to address a. The
memory system can non-deterministically call storec

PSO(p,a)
for any address a any number of times in any state of the execution.
loadPSO(p,a) returns the value from the oldest pending store

m : array[Adr] of V
Ba : array[Proc][Adr] of FIFOQueue of V

l: s t o r e PSO(p,a,v):
Ba[p][a].addLast(v)

s t o r e c
PSO(p,a):

i f (not Ba[p][a].empty())
m[a] = Ba[p][a].removeFirst()

l: loadPSO(p,a):
i f (not Ba[p][a].empty())

re turn Ba[p][a].getLast()
e l s e

re turn m[a]

l:CASPSO(p,a,oldv,newv):
whi le (not Ba[p][a].empty())

s t o r e c
PSO(p,a)

i f (m[a] == oldv)
m[a] = newv

l:membarssPSO(p) or l:membarslPSO(p):
foreach a ∈ Adr

whi le (not Ba[p][a].empty())
s t o r e c

PSO(p,a)

Figure 5: Operational Model of PSO

in Ba[p][a] or from main memory if no stores are buffered.
We conservatively implement both store-store and store-load

memory barriers in PSO by committing all pending stores. This
is too strict—these fences require only that pending stores commit
before later stores commit or later loads are issued. Thus, our op-
erational model does not quite capture all possible PSO behaviors.

Following the SPARC v9 description [24] of PSO, stores can be
delayed past compare-and-swaps on different addresses. But pend-
ing stores to the same address are committed before the CAS in
CASPSO(p,a). Our operational model can be easily changed for
instances of PSO in which CASs have stronger ordering properties.

Partial Store Load Order (PSLO).
The PSLO memory model was proposed by [16] to capture some

of the behaviors of RMO [24]. PSLO allows loads to be reordered
to before stores and loads of different addresses. This models both
speculative issuing of conditional loads (as in RMO) and specula-
tive data-dependent loads (not allowed in RMO).

Our operational model for PSLO is given Figure 6. PSLO is
very similar to PSO except that it also maintains a per-process, per-
address set S, called store history, of past stores. Like in PSO,

m : array[Adr] of V
Ba : array[Proc][Adr] of FIFOQueue of V
S : Set[Proc][Adr] of V

l: s t o r e PSLO(p,a,v):
Ba[p][a].addLast(v)

s t o r e c
PSLO(p,a):

i f (not Ba[p][a].empty())
m[a] = Ba[p][a].removeFirst()
S[p][a].clear()
foreach p’ ∈ Proc
S[p’][a].add(m[a])

l: loadPSLO(p,a):
i f (not Ba[p][a].empty())

re turn Ba[p][a].getLast()
e l s e
v = a value from S[p][a]
remove from S[p][a] values earlier

than v
re turn v

l:CASPSLO(p,a,oldv,newv):
whi le (not Ba[p][a].empty())

s t o r e c
PSLO(p,a)

i f (m[a] == oldv)
m[a] = newv

S[p][a].clear()
foreach p’ ∈ Proc
S[p’][a].add(m[a])

l:membarssPSLO(p):
foreach a ∈ Adr

whi le (not Ba[p][a].empty())
s t o r e c

PSLO(p,a)

l:membarllPSLO(p):
foreach a ∈ Adr:
S[p][a] = singleton(m[a])

l:membarslPSLO(p):
membarllPSLO(p)
membarssPSLO(p)

Figure 6: Operational Model of PSLO
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Bt : array[Proc] of FIFOQueue of N

l:before_storeTSO(p,a,v):
i f (l ∈ co and rand()<P)
Bt[p].addLast(time() + delay)

e l s e
Bt[p].addLast(time())

l:before_membarsl
TSO(p,a):

whi le (not Bt[p].empty())
waitUntil(Bt[p].getFirst())
Bt[p].removeFirst()

l:after_anyTSO(p):
whi le (not Bt[p].empty()

and Bt[p].getFirst() < time())
Bt[p].removeFirst()
s t o r e c

TSO(p)

Figure 7: Phase II for TSO

storePSLO(p,a,v) enqueues a write and loadPSLO(p,a)
returns the most recent pending store if one exists in the local write
buffer. But when there is no pending store, loadPSLO(p,a) re-
turns a value chosen non-deterministically from the set S[p][a]
of past stores and removes all older stored values. (Intuitively, this
models reordering the load back to just after that store committed.)

As in PSO, storec
PSLO(p,a) commits to the global memory

the oldest pending store of process p to address a. In addition, it
clears the set of past stores S[p][a]—because no later read of a
by p can be reordered before this store. Then for each process p’,
it adds the newly-committed value m[a] to the set S[p’][a].

We conservatively implement store-store and load-load fences
by committing all of p’s pending stores in membarss

PSLO(p) and
resetting all of p’s store histories in membarll

PSLO(p). We con-
servatively implement a store-load fence by performing both of
these actions. As in PSO, a compare-and-swap first commits pend-
ing stores to the same address and cannot be buffered.

4.3 Phase II of RELAXER

Given operational models for TSO, PSO, and PSLO, we can now
describe the RELAXER Phase II algorithm on these models.

In Phase II, RELAXER is given a potential→hb-cycle predicted
by Phase I. This cycle c = l1, l2, . . . , ln is a list of an even number
n of statement labels li. Our goal in Phase II is to execute the
test program in a controlled way so that its trace contains events
e1, . . . , en such that, for 1 ≤ j ≤ n: (1) l(ej) = lj , (2) if j is odd,
ej →p ej+1, and (3) if j is even, ej →c e(j+1)%n.

If these conditions are satisfied, then the e1, . . . , en form a
happens-before cycle on the statements l1, . . . , ln.

RELAXER focuses on the requirement (3) above, biasing the
thread scheduling and controlling the store buffers and histories to
try to create the conflict ordering ej →c e(j+1)%n for each even j.

Informally, we aim to cause ej →c e(j+1)%n for even j by:

(ODD) When RELAXER encounters an instruction labeled
l(j+1)%n, such that (j + 1)%n is odd, it aims to delay the
instruction so that some other thread can first execute a rac-
ing statement lj . This essentially means buffering l(j+1)%n

if it is a store or pausing the thread for some time before ex-
ecuting l(j+1)%n if it is a load.

(EVEN) When RELAXER encounters an instruction labeled lj ,
such that j is even, it aims to let lj execute quickly, so that it
completes before some other thread executes the racing state-
ment l(j+1)%n ∈ co. In TSO or PSO, when lj is a write this

Bt
a : array[Proc][Adr] of FIFOQueue of N

l:before_storePSO(p,a,v):
i f (l ∈ co and rand()<P)
Bt
a[p][a].addLast(time() + delayS)

e l s e
Bt
a[p][a].addLast(time())

l:before_loadPSO(p,a):
i f (l ∈ co and rand()<P)
waitUntil(time() + delayL)

l:before_CASPSO(p,a,oldv,newv):
i f (l ∈ co and rand()<P)
waitUntil(time() + delayL)

l:before_membarss
PSO(p):

l:before_membarsl
PSO(p):

whi le(∃a such that not Bt
a[p][a].empty())

waitUntil(Bt
a[p][a].getFirst())

Bt
a[p][a].removeFirst()

l:after_anyPSO(p):
foreach a ∈ Adr

whi le (not Bt
a[p][a].empty()

and Bt
a[p][a].getFirst() < time())

Bt
a[p][a].removeFirst()

s t o r e c
PSO(p,a)

Figure 8: Phase II for PSO

means immediately committing it (unless some other write is
pending). In PSLO, when lj is a load this means reading the
earliest value from the store history.

We now formally describe RELAXER’s Phase II strategy for each
memory model. Let co and ce denote the sets of odd-numbered {li |
i ∈ [1, n] ∧ i odd} and even-numbered {li | i ∈ [1, n] ∧ i even}
labels from the predicted cycle.

Our Phase II algorithms are presented in Figures 7, 8, and
9. The algorithms are described as modifications to the opera-
tional memory models. Functions such as before_load and
before_store are executed before each call by a test pro-
gram to the corresponding memory model function (i.e. load or
store). Similarly, after_any is called immediately after any
call to a memory model operation. These functions execute atom-
ically with the underlying memory model function, except where
they explicitly call waitUntil. Further, the Phase II algorithm
for PSLO completely replaces loadPSLO .

Note that the Phase II algorithms depend on both a notion of
time—via the time function—and a way to pause a running thread
until some later time—via the waitUntil function. The algo-
rithms work with wall time or a logical time incremented with each
executed instruction—we use wall time for simplicity.

Each Phase II algorithm maintains an extra buffer Bt or Bt
a, sim-

ilar to the buffers the B and Ba, respectively. Whenever a store
is buffered, a corresponding commit time is computed and queued
in Bt or Bt

a to record when the store should be committed. The
after_any(p) functions use these buffers to commit any oldest
pending stores whose times have been reached. Thus after_any
ensures that we immediately commit any pending store which is not
explicitly delayed or is behind an earlier commit that was delayed.

Note that each decision to delay a store, pause a thread, or load
an old value is gated by a condition: (rand() < P). That is,
we only perform the delay, etc., with probability P, which we set
to P = 0.5 in our experiments. This helps RELAXER explore all
possible dynamic occurrences of static predicted cycles.
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Bt
a : array[Proc][Adr] of FIFOQueue of N

l: before_storePSLO(p,a,v):
before_storePSO(p,a,v)

l: before_loadPSLO(p,a):
before_loadPSO(p,a):

l: before_CASPSLO(p,a,oldv,newv):
before_CASPSO(p,a)

l: before_membarss
PSLO(p):

l: before_membarsl
PSLO(p):

foreach a ∈ Adr
Bt
a[p][a].clear()

l: after_anyPSLO(p):
after_anyPSO(p)

l: loadPSLO(p,a):
i f (not Ba[p][a].empty())

re turn Ba[p][a].getLast()
e l s e i f (|S[p][a]|>1 and l ∈ ce

and rand()<P)
re turn earliest value from S[p][a]

e l s e
S[p][a] = singleton(m[a])
re turn m[a]

Figure 9: Phase II for PSLO

Total Store Order.
For TSO, the statements in co will always be stores, so there is

no need to pause before loads. In keeping with principle (ODD),
we buffer stores in co for some small time delay. Further, we
pause before store-load barriers until it is time to commit all pend-
ing stores, so that no purposely-delayed store is committed early.

Partial Store Order.
For PSO, a load or CAS could also be in co. So, in keeping with

(ODD), we pause for delayL before such statements. As in TSO,
we pause before forcibly committing any writes at a barrier. We
select delayL < delayS—i.e. delay writes longer than pausing
before stores—to ensure that a write in co from one thread does not
commit while we are paused before a load in co in another thread.

Partial Store Load Order.
We treat PSLO the same as PSO except for two differences. First,

when we encounter a load in ce, as discussed in (EVEN), we read
the earliest allowed value. Second, there is no need to pause at
memory barriers—even if a store l(j+1)%n has committed, a later
load lj can still read an earlier value from its thread’s store history.

5. EVALUATION
In evaluating RELAXER, we want to validate two hypotheses:

(1) RELAXER can predict and create real sequential consistency vi-
olations. Further, for a predicted and feasible happens-before cycle,
RELAXER creates the cycle with high probability. (2) RELAXER
can create violations of sequential consistency leading to real bugs.

5.1 Implementation
In order to evaluate our claims, we implemented RELAXER for

C. RELAXER intercepts all of the loads and stores executed by a test
program via source instrumentation with CIL [18]. We manually
replace calls to synchronization primitives such as pthread locks,
GCC atomic built-ins, etc., with calls to RELAXER stubs that trans-

late the operations into loads, stores, CASs, and memory barriers.
(Following [24] and [3], we treat lock acquires as load-load barriers
and lock releases as store-store barriers.) Together, this gives each
memory operation a unique static label.

RELAXER then provides implementations for each memory op-
eration for our four memory models: SC, TSO, PSO, and PSLO. In
addition to simulating the desired memory model, these implemen-
tations generate a trace of an executing test program and perform
the controlled scheduling of the Phase II algorithms. The cycle
prediction of Phase I is run off-line on generated execution traces.

Column 2 of Table 1 reports the average running time in seconds
of Phase I of RELAXER for each benchmark—i.e., the time to ex-
ecute once the benchmark’s test script (defined below), predicting
cycles via Algorithm 1. Columns 3 through 5 report average run-
ning times in seconds for Phase II for TSO, PSO, and PSLO—i.e.,
for one predicted cycle, the cost of one execution of the test script,
guiding the thread schedule and memory model. All experiments
were run on an 8-core Intel Xeon 2.0 Ghz system with 8 GB of
RAM and running Ubuntu 10.04.

5.2 Benchmarks
We evaluate RELAXER on ten benchmarks, listed in Table 1.

Benchmarks dekker and bakery are Dekker’s algorithm and
Lamport’s bakery algorithm [14], both classic solutions to the mu-
tual exclusion problem. The next five benchmarks are concur-
rent data structures—we use the implementations from [3]. The
benchmarks are msn, a non-blocking queue, ms2, a two-lock
queue, lazylist, a list-based concurrent set, harris, a non-
blocking set, and snark, a non-blocking double-ended queue. We
also evaluated RELAXER on three parallel application benchmarks:
pfscan, a parallel text scanning application, aget, a parallel FTP
client, and ctrace, a tracing library for multithreaded programs.

Neither the mutual exclusion or the data structure benchmarks
are closed programs. To apply RELAXER to them, we need test har-
nesses to exercise the benchmark code. Along the lines of [3], we
manually constructed a handful of test harnesses for each bench-
mark. For dekker and bakery, our test harnesses contain two
threads that use the provided mutex to protect a critical section.
Each thread executes its critical section three times and assertions
check that the two threads are never concurrently in their critical
sections. For the concurrent data structures, each test harness runs
multiple data structure operations in parallel and asserts that the re-
sults are correct. We check the result by comparing against a set of
all possible results when the test harness is run with each data struc-
ture operation run atomically. These harnesses are a proxy for the
kinds of parallel unit tests we expect a developer would use with
RELAXER. For the application benchmarks, a test harness runs
the application with a fixed input. The test script for each bench-
mark runs its harness 100 times (mutual exclusion and data struture
benchmarks) or 20 times (application benchmarks).

We report experimental results only for the largest test harnesses
we tried for each data structure. The results are similar for the
smaller harnesses, except that they have fewer predicted, con-
firmed, and buggy SC violations. These harnesses are:
• For queues msn and ms2, one threads performs two en-

queues, two dequeues, then an enqueue while a second thread
performs two dequeues, two enqueues, then a dequeue.
• For sets (sorted lists) lazylist and harris, insert 3 and

then 7, and then in three parallel threads: (1) insert -1 then
remove 2, (2) remove 3, insert 1, then check membership of
7, and (3) check membership of 3 and then insert -5.
• For double-ended queue snark, two parallel threads both

performing: push-right, push-left, pop-right, then pop-left.
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Table 1: Results of RELAXER experimental evaluation.

Approx.
LoC

Average Runtime (seconds) Cycles Cycles # of Empirical probability of
Benchmark phase 1 phase 2 Predicted Confirmed Bugs confirming a cycle

TSO PSO PSLO TSO PSO PSLO TSO PSO PSLO TSO PSO PSLO
dekker 20 1.1 1.9 2.0 2.5 112 47 45 69 39 38 65 0.69 0.81 0.84
bakery 30 2.3 4.4 3.6 5.4 222 36 75 100 33 68 96 0.85 0.84 0.82

msn 80 2.0 1.2 1.4 1.7 459 0 117 144 0 117 144 - 0.84 0.72
ms2 60 1.0 1.8 2.4 1.8 75 0 2 5 0 2 5 - 1.00 0.57

lazylist 120 1.9 2.7 2.9 3.1 192 0 8 10 0 8 9 - 0.96 0.62
harris 160 4.4 2.8 3.4 3.8 172 0 54 49 0 48 49 - 0.35 0.68
snark 150 6.3 1.6 1.0 1.2 1800 0 647 404 0 419 191 - 0.60 0.59
pfscan 1000 9.1 - - - 0 - - - - - - - - -
aget 1200 26.1 2.6 2.7 3.2 27 0 2 2 0 2 2 - 0.83 0.80

ctrace 1400 10.4 - - - 0 - - - - - - - - -

5.3 Experimental Setup
We run each of the test scripts described in the previous section

once under sequential consistency (SC) and record the execution
traces. These schedules are generated via noise making [7, 25]—
each SC memory operation contains a small, random sleep. These
traces are fed to Phase I of RELAXER and we record all predicted
happens-before cycles of length 4. We focus on length-4 cycles be-
cause they capture sequential consistency violations involving two
threads and ordering of memory operations on two addresses.

For Phase II of RELAXER, for each predicted cycle, we average
results over 30 trials of each benchmark’s test script under each
of TSO, PSO, and PSLO. We record which cycles we are able to
create in a real execution, and which of these confirmed sequen-
tial consistency violations lead to program errors—i.e. incorrect
output, assertion failures, or memory errors.

5.4 Experimental Results
Table 1 summarizes the results of these experiments. For each

benchmark listed in Column 1, the number of unique cycles pre-
dicted by Phase I is reported in Column 6. Columns 7, 8, and 9
report the number of these predicted cycles that RELAXER was
able to create under each of the three memory models. That is,
a predicted cycle is “confirmed” if, in at least one of the 30 trials,
RELAXER created a real violation of sequential consistency among
the static statements in the cycle.

The number of predicted and confirmed cycles validates the first
part of our Hypothesis (1): RELAXER can predict and then cre-
ate many real violations of sequential consistency in our bench-
marks. Note that RELAXER correctly reports zero potential cy-
cles for benchmarks pfscan and ctrace—these benchmarks
use sufficient synchronization to maintain sequential consistency.

In the last three columns of Table 1, we estimate the average
empirical probability with which one run of Phase II of RELAXER
creates a feasible cycle. That is, we average over all feasible cycles
c the quantity: (# of trials in which c is created)/(# of trials) . As
we cannot know which cycles are truly feasible, we assume a cycle
c is infeasible under a memory model if no RELAXER trial on that
model ever creates c.

These probability estimates provide evidence for the second part
of Hypothesis (1). RELAXER can reliably create most of these fea-
sible cycles by running Phase II only a handful of times.

Columns 10, 11, and 12 of Table 1 report the number of con-
firmed sequential consistency violations from Columns 7-9 which
lead in at least one trial to a program error. That is, RELAXER was
able to cause a program error by forcing the statements in a given
predicted happens-before cycle to actually witness a violation of
sequential consistency.

The number of observed program errors provides evidence for
Hypothesis (2): RELAXER can produce real bugs involving relaxed

memory models. We examine some of these bugs in greater detail.

Partial Initialization Bug(s).
Figure 10 lists simplified enqueue and dequeue methods from

benchmark ms2. The queue is a linked list with different locks H
and T for protecting the head and tail. When empty, the list contains
a single, “dummy” element.

RELAXER reports two buggy cycles for this benchmark:
(2, 5, 10, 14) and (3, 5, 10, 10). In both cases, under PSO a
write in dequeue to a field of a newly-allocated node can be de-
layed until after the node is added to the list at line 5. This allows
an enqueue from another thread to read a random, uninitialized
value for nhd->data or n->next, leading to an incorrect return
value or a memory error.

RELAXER found cycles exhibiting this partial initialization bug
in every data structure benchmark. To prevent such bugs, store-
store memory fences are needed—e.g., before line 5 in ms2.

Under PSLO, many of these bugs are possible even with added
store-store fences. A thread is permitted to read the out-of-date,
uninitialized value of nhd->data at line 14 even after reading at
line 10 the more recent value of n->next. This models a pro-
cessor speculating n->next and loading n->next->data be-
fore the load of n->next completes. Load-load fences are needed
to prevent such bugs. (Note that cycle (3, 5, 10, 10) is not in
PSLO \ PSO because unlock is a load-load fence.)

Read-After-Delayed-Write Bug(s).
Figure 11 lists the core of the dekker benchmark. The intention

is that only one thread at a time can pass through to its critical sec-
tion. When RELAXER predicts and creates the cycle (1, 2, 11, 12)
under the TSO memory model, it buffers the writes to flag0 and
flag1. Thus, the reads at lines 2 and 12 see flag0 = 0 and
flag1 = 0. This both violates sequential consistency and lets the
two threads erroneously enter the critical section at the same time.

This is a well know issue in Dekker’s algorithm—to function

struct Q { struct node {
lock H, T; node* next;
node *hd, *tl; void* data;

} }
dequeue(Q):

enqueue(Q, data): 8: lock(Q->H);
1: n = new_node(); 9: n = Q->hd;
2: n->data = data; 10: nhd = n->next;
3: n->next = NULL; 11: i f (nhd) {
4: lock(Q->T); 12: Q->hd = nhd;
5: Q->tl->next = n; 13: unlock(Q->H);
6: Q->tl = n; 14: re turn nhd->data
7: unlock(Q->T); 15: }

16: unlock(Q->H);
17: re turn NOT_FOUND;

Figure 10: Core of ms2 benchmark.
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Initially flag0 = flag1 = 0
thread0: thread1:

1: flag0 = 1; 11: flag1 = 1;
2: whi le (flag1) 12: whi le (flag0)
3: i f (turn) { 13: i f (!turn) {
4: flag0 = 0; 14: flag1 = 0;
5: whi le (turn) 15: whi le(!turn)
6: ; 16: ;
7: flag0 = 1; 17: flag1 = 1;
8: } 18: }

// Critical // Critical
// section // section

9: turn = 1; 19: turn = 0;
10: flag0 = 0; 20: flag1 = 0;

Figure 11: Core of dekker benchmark.

correctly on a relaxed memory model such as TSO, a store-load
fence must be placed between lines 1 and 2 and between lines 11
and 12. RELAXER similarly finds errors via cycles (1, 2, 17, 12)
and (7, 2, 11, 12), showing that store-load fences are needed im-
mediately after lines 7 and 17. RELAXER finds similar known is-
sues in the Bakery algorithm, where mutual exclusion is violated
if certain groups of stores are delayed past several later loads. No
TSO bugs were found for the other benchmarks—we believe they
are free of such read-after-delayed-write bugs.

5.5 Discussion
As RELAXER is a testing tool, it produces no false warnings.

However, it can have false negatives—i.e., fail to report bugs. We
next discuss some sources of this unsoundness.

First, RELAXER could fail to predict a feasible cycle. This could
happen if the test harness provided is not sufficient to predict all
program behaviors. In this paper we manually generated tests. Fur-
ther, we used a very coarse predictive analysis to get better coverage
of all feasible cycles.

Second, even if RELAXER predicts all feasible cycles, it may not
be able to confirm all such cycles. There are a couple of reasons
behind this. In order to create a difficult cycle: (1) a store may be re-
quired to remain buffered for a long time (unlikely in practice), and
(2) a complex thread schedule may be required. For example, con-
sider the predicted cycle (9, 10, 12, 15) for benchmark dekker.
This cycle is feasible, but it requires thread0 to buffer a write
to turn while thread1 enters, runs, and exits its critical section
and then while both threads simultaneously try to enter their criti-
cal sections again. We were not able to confirm several predicted
cycles in our benchmarks, both because our coarse predictive anal-
ysis reported many infeasible cycles and because we missed some
difficult-to-create cycles. (Note that we have determined manually
that all 25 unconfirmed predicted cycles for aget are infeasible.)

Third, even if RELAXER confirms all feasible cycles, it may not
be able to classify all cycles as buggy. A key reason behind this
is that some of the cycles are benign and cannot lead to a bug un-
der any circumstances. We analyzed dekker for benign cycles
and we found that some confirmed cycles, which were not reported
as buggy by RELAXER, were indeed benign. We discuss such a
benign cycle in some detail below.

Benign dekker Cycle.
Consider potential happens-before cycle (9, 2, 14, 15) for

benchmark dekker, listed in Figure 11. This happens-before cy-
cle is created in the trace shown in Figure 12. Initially, thread0 is
in its critical section, and thread1 is waiting to enter. thread0
exits its critical section then attempts to reenter. The write of 0 to
flag1 at line 14 is buffered, so that the read of flag1 at line 2
sees an old value. Note that this cycle is feasible even with all of the

Initially flag0 = 1, turn = 0
thread0: thread1:

14: flag1 = 0 [delayed]
15: read turn (0)

9: turn = 1
10: flag0 = 0

...
1: flag0 = 1
2: read flag1 (1)

-- SC violated --
Figure 12: Trace of dekker with a benign violation of se-
quential consistency: 14→p 15→c 9→p 2→c 14.

necessary store-load fences added (e.g., one between lines 1 and 2).
This violation is benign because thread0 will wait for

thread1 to modify turn and thread1 will eventually see the
write of 1 to turn and enter its critical section. More generally,
we can see that there is no need for any global ordering between
lines 14 and 15 or, similarly, lines 4 and 5. (Along the same lines,
it is safe for a processor, compiler, or run-time to reorder the writes
at lines 9 and 10 or lines 19 and 20.)

By quickly confirming buggy cycles, RELAXER can help sepa-
rate buggy cycles from benign cycles like the above example.

6. RELATED WORK
This work applies active random testing [22, 13] to predict and

reproduce violations of sequential consistency in parallel programs.
Several other recent techniques have been proposed to confirm po-
tential bugs in parallel programs using random testing. Havelund
et al. [2] uses a directed scheduler to confirm that a potential dead-
lock cycle could lead to a real deadlock. Similarly, ConTest [7]
uses the idea of introducing noise to increase the probability of the
occurrence of a variety of parallel bugs. CTrigger [21], instead of
trying out all possible schedules, uses trace analysis to systemat-
ically identify (likely) feasible unserializable interleavings for the
purpose of finding atomicity violations.

RELAXER relies on operational definitions of relaxed memory
models for its testing, and we give conservative approximations for
the TSO, PSO, and PSLO models. A number of researchers [4, 1,
23, 15] have developed operational definitions for TSO, PSO, and
other relaxed memory models.

Recently, Flanagan and Freund proposed to use an adversarial
memory to discover at run-time if a data race in a Java program
could be harmful under Java’s relaxed memory model [8]. For a
read operation involved in a data race, the technique checks if there
exists a different return value allowed by the Java Memory Model,
that would cause the program to exhibit a bug.

As mentioned in Section 1, there have been a number of efforts to
verify concurrent programs under relaxed memory models through
explicit state model checking [6, 20, 10] or bounded model check-
ing [9, 28, 3, 26], by translating both a test program and an ax-
iomatic specification of a memory model into SAT. Given a finite-
state program and a correctness/safety specification, Fender [12]
infers the least-strict memory fences needed to meet the specifica-
tion. [1] proves several decidability results for verification of finite-

Initially: x = y = 0
thread1 thread2
1: x = 1; 6: f1();
2: r1 = y; 7: lock(L);
3: lock(L); ...

... 8: unlock(L);
4: unlock(L); 9: y = 1;
5: f2(); 10: r2 = x;

Figure 13: Program with rare SC violation under TSO
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state concurrent programs under different relaxed memory models.
Run-time monitoring algorithms such as SOBER [4] and [5]

scale well in practice. They need to be driven by a model checker,
however, in order to find all violations of sequential consistency.
For example, consider the program in Figure 13. If f1() and
f2() are large, expensive functions, then the first thread will ac-
quire lock L before the second thread in almost all executions. If a
monitoring algorithm sees only such runs, it cannot detect the po-
tential violation of sequential consistency. But if RELAXER sees
any run of this program, it will predict the cycle (1, 2, 9, 10) and
can then direct the program’s executions to create the sequential
consistency violation. In addition, RELAXER is easily adapted to
any memory model for which we can develop an operational ap-
proximation, such as PSO and PSLO, while SOBER can currently
be applied only to TSO and [5] only to TSO and PSO.
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