
DETERMIN: Inferring Likely Deterministic Specifications
of Multithreaded Programs

Jacob Burnim
EECS Department
UC Berkeley, USA

jburnim@cs.berkeley.edu

Koushik Sen
EECS Department
UC Berkeley, USA

ksen@cs.berkeley.edu

ABSTRACT
The trend towards multicore processors and graphic processing
units is increasing the need for software that can take advantage of
parallelism. Writing correct parallel programs using threads, how-
ever, has proven to be quite challenging due to nondeterminism.
The threads of a parallel application may be interleaved nondeter-
ministically during execution, which can lead to nondeterministic
results—some interleavings may produce the correct result while
others may not. We have previously proposed an assertion frame-
work for specifying that regions of a parallel program behave de-
terministically despite nondeterministic thread interleaving. The
framework allows programmers to write assertions involving pairs
of program states arising from different parallel schedules.

We propose an algorithm to dynamically infer likely determin-
istic specifications for parallel programs given a set of inputs and
schedules. We have implemented our specification inference algo-
rithm for Java and have applied it to a number of previously exam-
ined Java benchmarks. We were able to automatically infer specifi-
cations largely equivalent to or stronger than our manual assertions
from our previous work.

We believe that the inference of deterministic specifications can
aid in understanding and documenting the deterministic behavior
of parallel programs. Moreover, an unexpected deterministic spec-
ification can indicate to a programmer the presence of erroneous or
unintended behavior.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification;
D.2.5 [Software Engineering]: Testing and Debugging; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs

General Terms
Reliability, Verification, Documentation

Keywords
determinism, specification inference, parallel programs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

1. INTRODUCTION
With the growing prevalence of multicore microprocessors and

graphic processing units (GPUs), software engineers are increas-
ingly required to write parallel programs. Unfortunately, parallel
programs have proven to be much more difficult to write and debug
than sequential software. A key culprit in this difficulty is that par-
allel programs can show different behaviors depending on how the
executions of their parallel threads interleave. The fact that execu-
tions of parallel threads can arbitrarily interleave with each other is
called internal nondeterminism or scheduler nondeterminism.

Internal nondeterminism enables multiple threads to run simulta-
neously, which is essential to harness the power of multicore chips.
However, internal nondeterminism in parallel programs could also
result in nondeterministic outputs. Most of the sequential programs
that we write are deterministic—they produce the same output on
the same input. Therefore, in order to make parallel programs easy
to write, test, and debug, we need to make them behave like sequen-
tial programs, i.e. we need to make parallel programs deterministic.

The most widespread method for writing parallel programs,
threads, requires programmers to ensure determinism. Ensuring
deterministic behavior in such programs is generally very challeng-
ing. Thus, a variety of tools and techniques have been proposed to
help ensure that multithreaded programs exhibit their intended de-
terminism. These tools attempt to automatically find sources of
nondeterminism likely to be harmful (i.e. to lead to nondetermin-
istic output) such as data races [25] and high-level race conditions.
However, the absence of data races does not always guarantee de-
terministic behavior [5, 16, 13]. On the other hand, the presence of
data races may not lead to unintended nondeterministic behavior,
and may aid in achieving high performance [6].

We have argued previously [8] that programmers should have a
way to directly and easily specify that a parallel software appli-
cation behaves deterministically. We proposed [8] a scheme for
asserting that a block of parallel code exhibits the intended, user-
specified semantic determinism. Formally, our framework allowed
a programmer to give a specification for a block C of parallel code
as:

deterministic assume(Pre(s0, s
′
0)) {

C
} assert(Post(s, s′));

This specification asserts the following: Suppose C is executed
twice with potentially different schedules, once from initial state
s0 and once from s′0 and yielding final states s and s′, respectively.
Then, if the user-specified precondition Pre holds over s0 and s′0,
then s and s′ must satisfy the user-specified postcondition Post.

We argued [8] that such assertions allow a programmer to specify
the correctness of the use of parallelism in an application indepen-
dently of the functional correctness. That is, one can specify that

different executions of a parallel program on the same input can-
not erroneously produce non-equivalent outputs due to scheduling
nondeterminism. This can be accomplished without having to spec-
ify anything about the correctness of individual outputs in terms
of their corresponding inputs. Our experiments [8] showed that if
the deterministic specification of a parallel program is provided, we
can distinguish true races from benign ones in the program and find
bugs in parallel programs that arise due to internal nondeterminism.

In this paper, we propose to automatically infer likely determin-
istic specifications for parallel programs. Specifically, given a set
of test inputs and thread schedules, for each procedure P of a par-
allel program, we infer a deterministic specification for the body of
a procedure P :

void P() {
deterministic assume(Pre(s0, s

′
0)) {

... body of P ...
} assert(Post(s, s′));

}

A key challenge in inferring likely deterministic specification of
a parallel program is that there could be several specifications for
the program; however, not all of the specifications are interesting.
For example, the following deterministic specification holds for any
parallel program, where Pre is any predicate.

void P() {
deterministic assume(Pre(s0, s

′
0)) {

... body of P ...
} assert(true);

}

To address the problem of inferring “interesting” deterministic
specifications, we argue that a (Pre, Post) pair is “interesting”
if the following two conditions hold.

1. Pre is a weakest liberal precondition for Post and Post is
a strongest liberal postcondition for Pre, and

2. Post is the strongest liberal postcondition for any possible
Pre, which we show to be unique.

We give an algorithm, DETERMIN, to compute one such “interest-
ing” deterministic specification from a set of executions observed
on a given set of inputs and schedules. We formally prove that if
the set of given inputs and schedules is the set of all inputs and
schedules, then we infer an actual “interesting” deterministic spec-
ification of the program.

We have implemented DETERMIN for Java and have applied it
to a number of previously examined Java benchmarks. We were
able to infer specifications largely equivalent to or stronger than
our manual assertions from [8].

We believe that the inference of deterministic specifications can
aid in program understanding and documentation of deterministic
behavior of parallel programs. Specifically, a correct inferred speci-
fication documents for programmers the deterministic aspect of the
parallel behavior of an application. Moreover, an unexpected de-
terministic specification can indicate to a programmer the presence
of buggy or otherwise unintended behavior. For example, consider
a specification indicating a critical component of the program out-
put is not deterministic; or consider a specification indicating that a
program’s determinism hinges on some believed-to-be insignificant
portion of the input.

Related Work
There is a rich literature on invariant generation [12, 15, 4, 32, 30,
33, 3, 24, 28, 9]. Daikon [12] automatically infers likely program

invariants using statistical inference from a program’s execution
traces. Csallner et al. [9] propose an approach, called DySy, that
combines symbolic execution with dynamic testing to infer pre-
conditions and postconditions for program methods. Hangal and
Lam [18] propose DIDUCE, which uses online analysis to discover
simple invariants over the values of program variables. Deryaft [24]
is a tool that specializes in generating constraints of complex data
structures. Logozzo [22] proposed a static approach that derives in-
variants for a class as a solution of a set of equations derived from
the program source. Houdini [15] is an annotation assistant for ES-
C/Java [14]. It generates a large number of candidate invariants and
repeatedly invokes the ESC/Java checker to remove unprovable an-
notations, until no more annotations are refuted. The problem of
program invariant generation is related to the problem of automatic
mining of temporal specifications of programs. Previous work [4,
32, 30, 33, 3, 1, 17] have approached this problem using both dy-
namic and static analysis techniques. The above mentioned tech-
niques mostly focuses on generation of traditional specifications.
Our approach is the first one to infer likely deterministic specifi-
cations of parallel programs. Unlike traditional specifications, our
inferred specifications relate two program states coming from dif-
ferent executions.

A number of ongoing research efforts aim to make parallel pro-
grams deterministic by construction [29, 23, 19, 2, 21, 7]. But
such efforts face two key challenges. First, new languages see slow
adoption and often remain specific to limited domains. Second,
new paradigms often include restrictions, such as hard-to-use type
systems, that can hinder general purpose programming.

Sadowski, et al., [27] propose a strict notion of determinism
where they require the final output to be bitwise equal; therefore,
their notion could not support semantic determinism. Kendo [26]
proposes deterministic thread scheduling for race free programs.
DMP [10] proposes hardware support for deterministic parallel ex-
ecution.

2. BACKGROUND
In this section, we review the key features of our previously pro-

posed deterministic specifications [8], quoting liberally from [8].
A block of parallel code is said to be deterministic if, given any

particular initial state, all executions of the code from the initial
state produce the exact same final state. In our proposed specifi-
cation framework, the programmer can specify that they expect a
block of parallel code, say P, to be deterministic with the following
construct:

deterministic {
P

}

Semantic Determinism.
We observed [8] that the above deterministic specification is of-

ten too conservative. For example, consider the following example,
where A, B, and C are floating-point matrices:
deterministic {
C = parallel_matrix_multiply_float(A, B);

}

Floating-point addition and multiplication being non-associative
due to rounding error, it may be unavoidable that the entries of
matrix C will differ slightly depending on the thread schedule.

In order to tolerate such differences, we relaxed the deterministic
specification:
deterministic {
C = parallel_matrix_multiply_float(A, B);

} assert(|C - C’| < 10−6);

This assertion specifies that, for any two matrices C and C’ re-
sulting from the execution of the matrix multiply from same initial
state, the entries of C and C’ must differ by only a small quantity
(i.e. 10−6).

Note that the above specification contains a predicate over two
states—each from a different parallel execution of deterministic
block. We call such a predicate a bridge predicate, and an assertion
using a bridge predicate a bridge assertion. Bridge assertions are
different from traditional assertions in that they allow one to write a
property over two program states coming from different executions
whereas traditional assertions only allow us to write a property over
a single program state.

This relaxed notion of determinism is useful in many contexts.
Consider the following example which adds in parallel two items
to a synchronized set represented internally as a red-black tree:

Set set = new SynchronizedTreeSet();
deterministic {

cobegin set.add(3); set.add(5); coend
} assert(set.equals(set’));

Here a strict deterministic assertion would be too conservative.
The structure of the resulting tree, and its layout in memory, will
likely differ depending on which element is inserted first, and thus
the different executions can yield different program states.

But we can use a bridge predicate to assert that, no matter what
schedule is taken, the resulting set is semantically equal. That is,
for objects set and set’ computed by two different schedules, the
equals method must return true because the sets must logically
contain the same elements. We call this semantic determinism.

Preconditions for Determinism.
So far we have described the following construct:

deterministic {
P

} assert(Post);

where Post is a predicate over two program states in different
executions resulting from different thread schedules. That is, if s
and s′ are two states resulting from any two executions of P from
the same initial state, then Post(s, s′) holds.

The above construct could be rewritten in the following way:

deterministic assume(s0 == s′0) {
P

} assert(Post);

That is, if any two executions of P start from initial states s0 and
s′0, respectively, and if s and s′ are the resultant final states, then
s0 == s′0 implies that Post(s, s′) holds. The above rewritten
specification suggests that we can further relax the requirement of
s0 == s′0 by replacing it with a bridge predicate Pre(s0, s

′
0). For

example:

deterministic assume(set.equals(set’)) {
cobegin set.add(3); set.add(5); coend

} assert(set.equals(set’));

The above specification states that if any two executions start
from sets containing the same elements, then after the execution
of the code, the resulting sets after the two executions must still
contain exactly the same elements.

Definition of Deterministic Specification.
In summary, we previously proposed [8] the following construct

for the specification of deterministic behavior.

deterministic assume(Pre) {
P

} assert(Post);

It states that for any two program states s0 and s′0, if

• Pre(s0, s
′
0) holds

• an execution of P from s0 terminates and results in state s

• an execution of P from s′0 terminates and results in state s′

then Post(s, s′) must hold.
More formally, let P (s0, σ) denote the resulting program state if

we run procedure P on initial state s0 and with thread schedule σ.
Then, the above deterministic specification states that:

∀s0, s′0, σ, σ′. Pre(s0, s
′
0) =⇒ Post(P (s0, σ), P (s′0, σ

′))

We abbreviate this condition by:

Pre =⇒P Post

Note that, technically, only certain thread schedules are possible
for each initial program state. That is, schedules σ should not be
universally quantified, but must come from the set Σ(s0) of thread
schedules for procedure P realizable from program state s0. And
function P (s0, σ) is defined only for σ ∈ Σ(s0). For simplicity,
however, we omit any further references to Σ(s0).

Note also that, for certain initial states s0 and thread schedules
σ, procedure P may not terminate. In this case, function P (s0, σ)
is not defined, as there is no resulting program state. We implicitly
quantify over only terminating executions. Thus, our deterministic
specifications are partial.

The advantage of our deterministic specifications is that they
provide a way to specify the correctness of just the use of paral-
lelism in a program, independent of the program’s full functional
correctness. In many situations, writing a full specification of func-
tional correctness is difficult and time consuming. But, a simple
deterministic specification enables us to use automated technique
to check for parallelism bugs, such as harmful data races causing
semantically nondeterministic behavior.

3. OVERVIEW OF DETERMIN
In this section, we give an informal overview of our algorithm

for dynamically inferring likely deterministic specifications. Con-
sider a procedure, bestTree, which, given a collection of DNA
sequences, computes in parallel a most likely phylogenetic tree1:

void bestTree(int N, int[][] dna,
int &score, int[] &tree)

{
// Parallel branch-and-bound search
// (with N threads) for an optimal
// tree given DNA sequences.
...

}

Given two runs of this procedure on identical DNA sequence
data, we would expect to get identical final likelihood scores. Be-
cause the procedure is a parallel branch-and-bound search, we can-
not expect two different runs to necessarily compute the same phy-
logenetic tree—for the input data, there may be multiple trees with
the same best score. Thus, we might manually specify the deter-
ministic behavior of procedure bestTree as:
1A tree showing suspected evolutionary relationships—i.e. shared
common ancestry—among a group of species or individuals.

void bestTree(int N, int[][] dna,
int &score, int[] &tree)

{
deterministic assume (dna == dna’) {

...
} assert (score == score’);

}

Data Collection.
To infer a deterministic specification for procedure bestTree,

we must first collect some sample of representative executions.
Suppose the programmers who wrote the code have also con-
structed two DNA sequence data sets, D1 and D2, which they use
for testing. (In the absence of hand-constructed test inputs, we
could potentially use random or symbolic test generation to con-
struct test cases.) Then, suppose we execute the procedure, perhaps
as part of some existing application or test, twice on each input:

N = 10, dna = D1 7−→ score = 140, tree = t1

N = 10, dna = D1 7−→ score = 140, tree = t2

N = 10, dna = D2 7−→ score = 175, tree = t3

N = 10, dna = D2 7−→ score = 175, tree = t4

Specification Inference.
In theory, there are infinitely many possible bridge predicates

relating pairs of inputs (N, dna), (N ′, dna′) or pairs of outputs
(score, tree), (score′, tree′). But we care only about a very re-
stricted subset of these bridge predicates: predicates that compare
only individual components across pairs of inputs or outputs, and
that compare those components only for certain types of equality
or approximate equality.

For example, for procedure bestTree, we are interested only
in four bridge predicates as preconditions:

true, N = N ′, dna = dna′, N = N ′ ∧ dna = dna′

and four bridge predicates as postconditions:

true, score = score′, tree = tree′, score = score′ ∧ tree = tree′

More generally, by focusing on equality between components
of input and output states, we only have to consider finitely-many
possible deterministic specifications. (Although the number of pos-
sible specifications is still exponential in the number of input and
output variables.)

Thus, we can think of the deterministic specification inference
problem as having two parts. First, we should determine which of
these possible deterministic specifications is consistent with our ob-
served executions. Second, we must decide which of the consistent
specifications to select as the final inferred specification.

There are six possible deterministic specifications consistent
with the four above observed executions. Four of these specifi-
cations are of the form Pre =⇒bT true—that is, each of the four
possible preconditions paired with the trivial postcondition. The
other two possible deterministic specifications are:

(dna = dna) =⇒bT (score = score′) (1)

(N = N ′ ∧ dna = dna) =⇒bT (score = score′) (2)

In selecting one of these six potential deterministic specifica-
tions, we are guided by two principles: (1) First, we should select
a specification with as strong of a postcondition as possible. Some
parts of a procedures output may be scheduler-dependent and non-
deterministic, but we would ideally like a specification that cap-
tures all parts of the output that are deterministic. (2) Second, for a

given postcondition, we should select as weak of a precondition as
possible.

For our running example, two of the possible specifications (i.e.
specifications (1) and (2) shown above) have the strongest con-
sistent postcondition score = score′. (Of course, no consistent
postconditions contain tree = tree′ because we observed execu-
tions with identical inputs but different final values of tree.) Se-
lecting the weaker of the two possible consistent preconditions for
score = score′ gives us the deterministic specification:

(dna = dna) =⇒bT (score = score′)

For this example, the inferred deterministic specification is ex-
actly the one we would have manually written. In general, how-
ever, there is always the danger that we will infer a postcondition
that is too strong because we have observed no executions showing
the nondeterminism of some output. Similarly, we may infer a pre-
condition that is too weak because we have observed no executions
showing that the deterministic behavior depends on a particular in-
put. In the end, we must rely on having a sufficiently representative
set of test inputs and running on sufficiently-many possible thread
schedules to defend against inferring inaccurate deterministic spec-
ifications.

4. INFERRING DETERMINISTIC SPECS
In this section, we formally describe the problem of inferring

deterministic specifications. Let P be a procedure that executes
atomically and with internal parallelism. A procedure P in a given
program is atomic [16] if, no other component of the program that
can run in parallel with P can interfere with the execution of P .
We say that procedure P has internal parallelism if, when P is
executed, P performs a computation in parallel and P returns only
after all parallel work has completed. For example, P may spawn
several threads, but must join all of the threads before returning.

For the body of a procedure P , we want to infer a deterministic
specification of the form:

void P() {
deterministic assume(Pre(s0, s

′
0)) {

... body of P ...
} assert(Post(s, s′));

}

4.1 Deterministic Specification Model
In theory, the pre- and postconditions in a deterministic specifi-

cation can be arbitrary bridge predicates. We restrict our attention,
however, to a specific class of bridge predicates: conjunctions of
semantic equality predicates.

We treat programs as having a finite set M of disjoint memory
locations {m1, . . . ,mk}. Then, a program state s is a mapping
from these global variables mi to values s(mi) from set V of pos-
sible program values.

We further suppose that we have a finite set EQ of semantic
equality predicates on program values. We require these predicates
to be reflexive and symmetric relations on program values, and that
this set include the strict equality predicate v = v′. (In our im-
plementation, for example, we also include a approximate numeric
equality |v − v′| ≤ ε and semantic object equality v.equals(v′).)

Then, we consider the class of bridge predicates characterized by
subsets of M × EQ. For some X ⊆ M × EQ, we define a bridge
predicate ϕX by:

ϕX(s, s′) =
^

(m,eq)∈X

eq
“
s(m), s′(m)

”

That is, for each pair of memory location m and equality predicate
eq we compare the value of m from states s and s′ using eq. The
bridge predicate is the conjunction of all such equality predicates.

We justify this restriction by noting that this class of bridge pred-
icates sufficed to manually specify the natural deterministic behav-
ior of the benchmarks examined in our previous work [8].

An advantage of this restriction is that there exist only finitely
many bridge predicates—one for each of the 2|M||EQ| subsets of
M × EQ. Thus, there are only 22|M||EQ| possible deterministic
specifications, consisting of one pre- and one postcondition, for a
procedure P .

4.2 Specification Inference Problem
As described above, every pair of subsets of M × EQ defines

a possible deterministic specification. For a given procedure P ,
many of these possible specifications may be true. That is, there
may be many pre, post ⊆M × EQ for which ϕpre =⇒P ϕpost.

Here we formally describe which of these true specifications,
for a procedure P , we believe is the most natural and interesting
choice. In short, we should infer specifications ϕpre =⇒P ϕpost

only where ϕpost is the strongest liberal postcondition of ϕpre and
ϕpre is a weakest liberal precondition ofϕpost. Further, of such spec-
ifications, we should return one with the unique, strongest possible
postcondition ϕpost. (We will show that such a unique, strongest
postcondition must exist.)

Lattice Structure of Deterministic Specifications.
The subsets of M × EQ naturally form a complete lattice under

the ordering ⊆ and with join ∪.
This induces a complete lattice on bridge predicates ϕX , with:

ϕX v ϕY ⇐⇒ X ⊇ Y , ϕX u ϕY = ϕX∪Y

Note that the lattice on predicates is reversed—larger sets yield
smaller predicates, and the meet of two predicates is the join of the
corresponding sets. This lattice has least and greatest elements:

⊥ = ϕM×EQ = ∀(m, eq) ∈M × EQ. eq(s(m), s′(m))

> = ϕ∅ = true

Note that, because every element of EQ is reflexive and sym-
metric, every predicate ϕX is reflexive and symmetric on program
states. In particular, ⊥(s, s) for any state s.

We now state several simple but important properties of these
lattices and their relation to the validity of deterministic specifica-
tions.

PROPOSITION 1. The lattice operations u and v on bridge
predicates are exactly logical conjunction and implication:

ϕX ∧ ϕY = ϕX u ϕY (= ϕX∪Y)

ϕX =⇒ ϕY ⇐⇒ ϕX v ϕY (= X ⊇ Y)

PROPOSITION 2. Relation =⇒P distributes over the meet (u)
operation on bridge predicates, and the join operation on subsets
of M × EQ, in the sense that:

ϕX ⇒P ϕY ∧ ϕX ⇒P ϕY ′ ⇐⇒ ϕX ⇒P (ϕY u ϕY ′)

or, equivalently:

ϕX ⇒P ϕY ∧ ϕX ⇒P ϕY ′ ⇐⇒ ϕX ⇒P ϕY ∪Y ′

PROPOSITION 3. Relation =⇒P is monotone in its second ar-
gument and anti-monotone in its first argument with respect to the
lattice on bridge predicates:

ϕX =⇒ ϕX′ , ϕY =⇒ ϕY ′

=⇒ (ϕX′ ⇒P ϕY =⇒ ϕX ⇒P ϕY ′)

In light of Proposition 3, we will say that a deterministic spec-
ification (ϕX , ϕY) is stronger or more strict than another spec-
ification (ϕX′ , ϕY ′)—denoted (ϕX , ϕY) v (ϕX′ , ϕY ′)—when
ϕX′ =⇒ ϕX and ϕY =⇒ ϕY ′ .

Strongest Liberal Postcondition.
For any precondition ϕpre for a procedure P , we can define the

strongest liberal postcondition SLPP (ϕpre) of ϕpre as the least ϕpost

such that ϕpre =⇒P ϕpost. We show below that there is always a
unique SLPP (ϕpre).

PROPOSITION 4. Let ϕpre be a precondition for procedure P .

SLPP (ϕpre) =
l
{ϕpost | ϕpre =⇒P ϕpost}

PROOF. First, note that ϕpre =⇒P > so the meet in the propo-
sition is over a non-empty set. Let ϕslp denote the meet over all
postconditions that follow from ϕpre.

Then, ϕpre =⇒P ϕslp, because =⇒P distributes over u.
Further, ϕslp is clearly the least ϕpost such that ϕpre =⇒P ϕpost,

because it is the meet of all such postconditions.

COROLLARY 5. Operator SLPP is monotone. That is, if
ϕX =⇒ ϕY , then SLPP (ϕX) =⇒ SLPP (ϕY).

PROOF. Suppose ϕX =⇒ ϕY .
Because ϕY =⇒P SLPP (ϕY) and by the anti-monotonicity

of =⇒P , we have ϕX =⇒P SLPP (ϕY). Therefore, be-
cause SLPP (ϕX) is the strongest postcondition of ϕX , we have
SLPP (ϕX) =⇒ SLPP (ϕY).

By the monotonicity SLPP , the strongest postcondition that
holds for P under any possible precondition, is SLPP (⊥). Note
that, equivalently, this unique strongest postcondition is the meet
over all true postconditions:

l
{ϕpost | ∃ϕpre. ϕpre =⇒P ϕpost}

Thus, in particular, postcondition SLPP (⊥) is the conjunction of
the most individual equality predicates of any true postcondition.

Weakest Liberal Precondition.
We can similarly define the weakest liberal precondition of a

postcondition ϕpost. However, because we restrict our precondi-
tions and postconditions to be conjunctions of equality predicates
on individual memory locations, there may not be a unique weak-
est (or largest) precondition for a ϕpost. Thus, we must define
WLPP (ϕpost) to be the set of all weakest liberal preconditions:

DEFINITION 6. ϕpre ∈ WLPP (ϕpost)—i.e. is a weakest liberal
precondition of ϕpost—if and only if both:

1. ϕpre =⇒P ϕpost , and

2. If there exists a ϕ′ such that ϕ′ =⇒P ϕpost and ϕpre =⇒
ϕ′, then ϕ′ = ϕpre.

Inferred Specification.
With these formal definitions, we can say that the deterministic

specification inference problem for a procedure P is to compute,
or to approximate as closely as possible, a deterministic specifi-
cation ϕpre =⇒P ϕpost where ϕpost = SLPP (⊥) is the unique
strongest possible postcondition for any precondition and where
ϕpre is a weakest liberal precondition of ϕpost.

Algorithm 1 Infer a likely deterministic specification given a setR
of executions of procedure P .
1: PostR ← SLPP,R(⊥)
2: PreR ← WLPP,R(PostR)
3: return (PreR,PostR)

5. DETERMIN ALGORITHM
In the previous section, we have defined the set of strongest true

deterministic specifications for a given procedure P . When infer-
ring a deterministic specification from a limited number of exe-
cutions of a procedure P , however, we can only approximate the
procedure’s true specification.

Suppose we have a finite set R of observed executions
{(s1, σ1, t1), . . . , (sn, σn, tn)} of procedure P , where each ti is
the state P (si, σi) resulting from executing P from initial state si

on thread schedule σi. A deterministic specification (Pre,Post)
is satisfied for the observed executions R, which we abbreviate
Pre =⇒P,R Post, when:

∀1≤i,j≤n. Pre(si, sj) =⇒ Post(ti, tj)

Note that this definition is identical to that of =⇒P , except that
we only universally quantify over the observed inputs and thread
schedules. We can similarly define the strongest liberal postcon-
dition SLPP,R and weakest liberal preconditions WLPP,R over
observed executions R.

Our overall inference algorithm is presented in Algorithm 1.
Given a set of executionsR of a procedure P , we will infer a likely
deterministic specification (PreR,PostR).

The algorithm consists of two stages. First, we infer PostR

by computing SLPP,R(⊥), the strongest liberal postcondition,
given executions R of P , of precondition ⊥. Recall that
this is the strongest possible postcondition, given executions R,
for any precondition. Second, we infer PreR by computing
WLPP,R(PostR), a weakest liberal precondition, given executions
R of P , of postcondition PostR.

5.1 Computing the Strongest Postcondition
Algorithm 2 computes the strongest liberal postcondition, given

executions R, of some ϕpre. The algorithm iterates over every pair
of executions (si, σi, ti), (sj , σj , tj) that satisfy ϕpre. For each
such pair, it computes the set of all individual equality predicates
that hold on the resulting program states. The algorithm accumu-
lates into post the intersection of all these sets. Thus, at the end
of the algorithm, ϕpost is the conjunction of all equality predicates
that hold for pairs of post-states resulting from pre-states matching
ϕpre. That is, ϕpost is the strongest liberal postcondition of ϕpre for
the observed executions R.

Checking the condition at line 3 and computing the set and the
intersection in line 4 can all be done in O(|M | |EQ|) time. Thus,
the whole SLP computation requires O(|M | |EQ| |R|2) time.

5.2 Computing a Weakest Precondition
Algorithm 3 computes a weakest liberal precondition, given ex-

ecutions R, for some ϕpost. The algorithm begins with ϕpre = ⊥ =
ϕM×EQ, and then greedily weakens ϕpre until it can be made no
weaker while remaining a precondition forϕpost on the observed ex-
ecutions R. Lines 3-5 check if the current ϕpre can be safely weak-
ened by removing the conjunct eq(s(m), s′(m)) from ϕpre(s, s

′).
It is sufficient to consider each (m, eq) only once during the

computation. Suppose it was not possible to weaken some pre1

by removing (m, eq), but it was possible to weaken a later
pre2 by removing the same (m, eq). Because pre2 comes later,

Algorithm 2 Compute SLPP,R(ϕpre)

1: post←M × EQ
2: for all (si, σi, ti), (sj , σj , tj) ∈ R×R do
3: if ϕpre(si, sj) then
4: post← post ∩ {(m, eq) | eq(ti(m), tj(m))}
5: end if
6: end for
7: return ϕpost

Algorithm 3 Compute a WLPP,R(ϕpost)

Require: ⊥ =⇒P,R ϕpost

1: pre←M × EQ
2: for all (m, eq) ∈M × EQ do
3: if ϕpre−{(m,eq)} =⇒R,P ϕpost then
4: pre← pre− {(m, eq)}
5: end if
6: end for
7: return ϕpre

pre1 ⊇ pre2 and thus (pre1 − {(m, eq)}) ⊇ (pre2 − {(m, eq)})
But, then if ϕpre2−{(m,eq)} =⇒P,R ϕpost, we must also have
ϕpre1−{(m,eq)} =⇒P,R ϕpost, which is a contradiction.

Note that, depending on the order in which the algorithm con-
siders the elements of M × EQ, it can return any of the possible
weakest preconditions of ϕpost under the observed executions.

Checking the condition at line 3 requires O(|M | |EQ| |R|2)
time, to determine that ϕpre−{(m,eq)} =⇒ ϕpost on every pair
of observed executions. Thus, the entire computation of a PreR

requires O(|M |2 |EQ|2 |R|2) time.

5.3 Correctness
We now formally state several important properties of our deter-

ministic specification inference algorithm. To conserve space, we
omit the proofs of these statements—the proofs can be found in the
accompanying technical report.

Most importantly, we show in Proposition 7 that the DETERMIN
algorithm is correct. That is, for any inferred deterministic specifi-
cation (PreR,PostR) for executions R of procedure P :

1. PreR is a weakest liberal precondition for PostR and
PostR is a strongest liberal postcondition for PreR, given
the executions in R.

2. PostR is the unique strongest liberal postcondition for any
possible precondition given the executions in R.

We further show (Corollary 9) that an inferred postcondition
PostR will always be stronger than the strongest true postcon-
dition SLPP (⊥). And the more executions R we observe, the
weaker—i.e. closer to the true strongest postcondition—our in-
ferred postcondition will be (Proposition 8).

Example 10 shows that we cannot make analogous guarantee for
our inferred precondition PreR. Rather, we can only guarantee
that additional executions will only strengthen the inferred precon-
dition as long as they do not weaken the postcondition PostR

(Propositions 11 and 12). And, if PostR is the true strongest
postcondition for any precondition and for all executions, then
as we observe additional executions our stronger and stronger in-
ferred PreR will approach a true weakest precondition for PostR

(Corollaries 13 and 14).
PROPOSITION 7. Let (PreR,PostR) be the specification in-

ferred for executions R of P . Then, PreR ∈ WLPP,R(PostR)
and PostR = SLPP,R(PreR).

Further, for any ϕpre =⇒P,R ϕpost, we have PostR =⇒ ϕpost.

PROPOSITION 8. Let PostR and PostR′ be the inferred post-
conditions for R ⊆ R′. Then, PostR =⇒ PostR′ .

COROLLARY 9. Let PostR be the inferred postconditions for
observed executions R. Then, PostR =⇒ SLPP (⊥). That is,
PostR is stronger than the strongest true postcondition.

EXAMPLE 10. Consider the following contrived procedure op-
erating on two global variables x and y:

example() {
<x = x + 1> || <y = 0> || <y = y + 1>;

}

Procedure example runs three atomic statements in parallel:
an increment of x, an assignment of y to zero, and an increment of
y. Suppose we observe the executions:

x = 0, y = 0 7−→ x = 1, y = 0

x = 0, y = 1 7−→ x = 1, y = 1

x = 1, y = 1 7−→ x = 2, y = 0

Then, we will infer the specification precondition x = x′ ∧ y = y′

and postcondition x = x′ ∧ y = y′.
But, suppose we observe the additional execution:

x = 0, y = 0 7−→ x = 1, y = 1

Then we will see that y = y′ cannot be guaranteed, and we will
infer the true specification x = x′ =⇒example x = x′, which has
a weaker precondition.

PROPOSITION 11. Let Post be the inferred postcondition for
both R and R′, with R ⊆ R′. Further, let PreR be an inferred
precondition under R. Then, there is no strictly weaker inferred
precondition Pre′R.

PROPOSITION 12. Let Post be the inferred postcondition for
both R and R′, with R ⊆ R′. Further, let PreR′ be an
inferred precondition under R′. Then, there is a PreR from
WLPP,R(Post)—i.e. a possible inferred precondition for observed
executions R— such that PreR′ =⇒ PreR.

COROLLARY 13. Let the postcondition inferred for executions
R be Post = SLPP (⊥). Further, let PreR be an inferred pre-
condition under R. Then, there are no true preconditions of Post,
i.e. elements of WLPP (Post), strictly weaker than PreR.

COROLLARY 14. Let the postcondition inferred for executions
R be Post = SLPP (⊥). Further, let Pre be a true precondition
for Post. Then, there is a PreR from WLPP,R(Post)—i.e. a
possible inferred precondition under observed executionsR— such
that Pre =⇒ PreR.

5.4 A More Conservative Precondition
Our algorithm for computing a precondition from

WLPP,R(PostR) finds a weakest liberal precondition PreR such
that no pair of executions from R falsifies PreR =⇒P PostR.
When only a small number of executions or procedure inputs are
examined, such a precondition may be too weak.

For example, consider a procedure P whose input consists of
ten integers x0, . . . , x9 and whose output is the sum sum of the
integers. Suppose we observe executions R of this method from
only two distinct initial states—one where x0 = · · · = x9 = 0
and one where x0 = · · · = x9 = 1. Then, the deterministic
specification x3 = x′3 =⇒P,R sum = sum′ is consistent with the
data. That is, we observe no pair of executions that falsifies that

Algorithm 4 Compute a WLOPP,R(ϕpost)

Require: ⊥ =⇒P,R ϕpost

1: // Find the occurring preconditions of ϕpost.
2: occurs← ∅
3: for all (si, σi, ti), (sj , σj , tj) ∈ R×R do
4: pre← {(m, eq) | eq(si(m), sj(m))}
5: if ϕpre =⇒P,R ϕpost then
6: occurs← occurs ∪ {pre}
7: end if
8: end for
9: // Select a weakest occurring precondition of ϕpost.

10: for all pre ∈ occurs do
11: if ¬∃pre′ ∈ occurs. pre′ ⊆ pre then
12: return ϕpre

13: end if
14: end for

x3 = x′3 is a necessary precondition for determinism—i.e. a pair
in which x3 = x′3, but because some other input is not equal, the
final sums are not equal.

To combat such an inadequate test set, rather than report any
weakest liberal precondition consistent with out observed execu-
tions, we can report a weakest occurring liberal precondition.

DEFINITION 15. We say that precondition ϕpre occurs in a set
R of observed executions iff there is a pair (si, σi, ti), (sj , σj , tj)
from R, with i 6= j, such that ϕpre is the strongest bridge
predicate satisfied by si and sj . That is, pre is the set
{(m, eq) | eq(si(m), sj(m))}.

We define the set WLOPP,R(ϕpost) of weakest liberal occurring
preconditions for P of ϕpost under observed executions R by:

DEFINITION 16. ϕpre ∈ WLOPP,R(ϕpost) iff:

1. ϕpre =⇒P,R ϕpost,

2. ϕpre occurs in R, and

3. If ϕ′pre occurs in R and ϕ′pre =⇒P,R ϕpost and
ϕpre =⇒ ϕ′pre, then ϕ′pre = ϕpre.

Algorithm 4 computes an element of WLOPP,R for a postcondi-
tion. We can compute an occurring weakest precondition PreR by
applying Algorithm 4 to PostR.

Note that, unlike with a WLP, observing additional executions
may strengthen or weaken WLOPP,R(PostR), even if PostR does
not change. This is because additional observations can now pro-
vide a weaker occurring precondition, in addition to falsifying a
previous weakest precondition. However, in the limit of observing
all possible executions of P , there is clearly no difference between
WLOPP,R(PostR) and WLPP,R(PostR).

6. EVALUATION
In this section, we describe our efforts to experimentally evaluate

the effectiveness of our algorithm for inferring likely deterministic
specifications. We aim to show that, given a small number of rep-
resentative executions, our algorithm can infer correct and useful
deterministic specifications. That is, that our inferred specifica-
tions capture the intended natural deterministic behavior of parallel
programs.

To evaluate these claims, we implemented our specification in-
ference algorithm DETERMIN for Java applications and applied
DETERMIN to the benchmarks to which we previously had man-
ually added deterministic specifications in [8]. We then compared
the quality and accuracy of the inferred and manual specifications.

6.1 Benchmarks
We evaluate DETERMIN on the benchmarks previously exam-

ined in [8]. These benchmarks are primarily from the Java Grande
Forum (JGF) benchmark suite [11] and the Parallel Java (PJ) li-
brary [20]. The names and sizes of the benchmarks are given
in Table 1. Benchmark tsp is a parallel Traveling Salesman
branch-and-bound search [31]. The JGF benchmarks include
five parallel computation kernels—for successive order-relaxation
(sor), sparse matrix-vector multiplication (sparsematmult),
computing the coefficients of a Fourier series (series), encryp-
tion and decryption (crypt), and LU factorization (lufact)—
as well as a parallel molecular dynamic simulator (moldyn),
ray tracer (raytracer), and Monte Carlo stock price simu-
lator (montecarlo). The Parallel Java (PJ) benchmarks in-
clude an app for computing a Monte Carlo approximation of π
(pi3), an app for cryptographic cracking a cryptographic key
(keysearch3), an app for parallel rendering of a Mandelbrot Set
image (mandelbrot), and a parallel branch-and-bound search
for an optimal phylogenetic tree (phylogenetic). These bench-
marks range from a few hundred to a few thousand lines of code,
with the PJ benchmarks relying on an additional roughly 15,000
lines of library code from the Parallel Java Library for threading,
synchronization, and other functionality.

In [8], we added a single deterministic specification block to each
benchmark, around the benchmark’s entire parallel computation.

6.2 Methodology
In order to apply the DETERMIN algorithm to these benchmarks,

we need: (1) to decide for which regions in each benchmark to in-
fer deterministic specifications, (2) to select a set of representative
executionsR of these regions as inputs to DETERMIN, (3) to define
the sets of memory locations M and semantic equality predicates
EQ for the benchmarks.

Regions for Deterministic Specification Inference.
In this work, we have proposed inferring deterministic specifica-

tions for procedures—either for all procedures detected to have in-
ternal parallelism or for some set of user specified procedures. Our
manual deterministic specifications in [8], however, were written
not at procedure boundaries, but around certain hand-chosen syn-
tactic blocks of code containing internal parallelism. (Each such
block is atomic because it is the only region in its benchmark that
performs a parallel computation.) Thus, to enable a fair and di-
rect comparison, we use DETERMIN to infer deterministic precon-
ditions and postconditions at the beginning and end of the single
deterministic block manually identified in [8]. That is, in each rep-
resentative execution we record the program state at the beginning
and end of the manually identified deterministic block.

Representative Executions.
We similarly ran each PJ benchmark and tsp twenty times—ten

on each of of two selected inputs, half with five threads and half
with ten threads. Benchmark tsp, all of the JGF benchmarks, and
many of the PJ benchmarks come with test inputs. When available,
we used two of these test inputs. Otherwise, we constructed inputs
by hand.

The representative executions were run under the Sun JDK 6 on
an eight-core Intel Xeon 2GHz Linux system.

Note that, due to the small number of test inputs, we com-
pute the more conservative weakest liberal occurring precondition
(WLOP), described in Algorithm 4, for our inferred postcondition,
rather than a weakest liberal precondition (WLP).

Memory Locations and Equality Predicates.
For the Java program states recorded during the representative

executions, we generate a set M of memory locations by enu-
merating all paths of field dereferences, up to some fixed length,
through the programs’ memory graphs starting at the local vari-
ables and static classes. (For example, n, this.results.bestScore,
or AppClass.N_THREADS.) For completeness, we considered all
paths of length up to 8, yielding from roughly 20 to 150 memory
locations for each benchmark.

We use several equality predicates to compare these memory lo-
cations: Primitive types are compared using strict equality or ap-
proximate equality (equal to within 10−10) for floating-point val-
ues. Objects are compared using their equals() methods. Object
arrays, Lists, and Iterables can be compared element-by-element or
compared as sets of elements.

6.3 Implementation
To capture and record program states at desired points in our

benchmarks, the data collection component of our implementation
uses the Java Reflection API to traverse and serialize a running pro-
gram’s memory graph. We manually instrumented the local vari-
ables in scope at the open and close of each deterministic block.

The specification inference portion of our implementation takes
a set of these serialized and pre- and post-states as input and out-
puts an inferred deterministic strongest liberal postcondition and
weakest liberal occurring precondition. Both components together
are implemented in roughly 1000 lines of Java code.

Heuristics.
The above approach generates a large number of memory loca-

tions and equality predicates, leading to deterministic specifications
with too many conjuncts in their preconditions and postconditions.
We employ several heuristics to decrease the size and increase the
relevancy of our deterministic specifications:

First, we remove from the inferred postconditions any locations
not modified in at least one execution by the region of code un-
der examination. Without this heuristic, the strongest postcondition
(and thus also the precondition) for a region will contain a conjunct
v = v′ for each variable v not modified by the region. While such
an added conjunct is correct—we can guarantee the determinism
of variables that are not modified—it is generally not relevant to
computation being performed. On each of our benchmarks, this
heuristic removes roughly from 10 to 60 conjuncts.

Second, we remove from the inferred precondition and postcon-
dition any conjuncts that are satisfied by every pair of observed
program executions. These locations tend to be global constants,
such as hard-coded parameters and Class objects. As above, pred-
icates involving such constants are typically not relevant. On each
our benchmarks, this heuristic can remove as many as 75 conjuncts
from the precondition or postcondition.

Third, we eliminate redundant conjuncts. For example, if a pre-
condition contains the conjunct o.equals(o) for an array o, then we
will not include the redundant, weaker conjunct o.f.equals(o.f ′).
Or if our postcondition contains conjunct x = x′, we will not add
the redundant conjunct |x− x′| ≤ 10−10. On each our bench-
marks, this heuristic removes only a handful of conjuncts from the
final preconditions and postconditions.

6.4 Results
The results of our experimental evaluation are shown in Ta-

ble 1. We will argue the these results provide evidence for our
claims that DETERMIN can automatically infer deterministic spec-
ifications that are both accurate and useful.

Benchmark
Approximate
Lines of Code (App
+ Library)

Precondition Postcondition

Manual # Inferred As Strong # Manual # Inferred As Strong
Conjuncts Conjuncts As Manual? Conjuncts Conjuncts As Manual?

JGF

sor 300 3 2 No 1 7 Yes
sparsematmult 700 4 4 No 1 2 Yes
series 800 1 3 Yes 1 1 Yes
crypt 1100 1 5 Yes 2 2 Yes
moldyn 1300 2 14 Yes 3 7 Yes
lufact 1500 4 9 Yes 3 3 No∗
raytracer 1900 2 3 Yes 1 1 Yes
montecarlo 3600 1 2 Yes 1 1 Yes

PJ

pi3 150 + 15,000 2 3 Yes 1 1 Yes
keysearch3 200 + 15,000 3 5 Yes 1 3 Yes
mandelbrot 250 + 15,000 7 11 Yes 1 5 Yes
phylogeny 4400 + 15,000 3 5 Yes 2 11 Yes
tsp 700 1 3 Yes 1 2 Yes

Table 1: Results of our experimental evaluation of DETERMIN. For each benchmark, we report the approximate size of the bench-
mark and the number of conjunctions in the manual deterministic precondition and postcondition added to the benchmark in [8].
We also report the number of conjuncts in the strongest liberal postcondition (SLP) and weakest liberal occurring precondition
(WLOP) of the deterministic specification inferred by DETERMIN for each benchmark. Further, we indicate whether each inferred
precondition and postcondition is at least as strict as its corresponding hand-specified condition.

Accuracy: Postconditions.
For every benchmark but lufact, our automatically inferred

postcondition was at least as strong as the corresponding manually-
specified postcondition from [8]. Further, the inferred postcondi-
tion for lufact is actually more accurate than our manual one.
When writing the manual specification for lufact in [8], we
wrote postcondition a = a′ ∧ ipvt = ipvt′ ∧ x = x′. But, in fact,
the lufact routine writes no output into variable x. The relevant
output—the solution to the linear system being solved—is written
to variable b. The correct postcondition, inferred by DETERMIN, is
a = a′ ∧ ipvt = ipvt′ ∧ b = b′

Of the other benchmarks, for all but three of them (sor,
moldyn, and tsp), the inferred postcondition is equivalent to the
manual one. Although the inferred postconditions contain more
conjuncts, these postconditions hold for the same pairs of execu-
tions. For example, the manual postcondition for mandelbrot is
simply matrix = matrix′. That is, the resulting image, stored as
a matrix of hues, is deterministic. The inferred postcondition also
contains image.myWidth = image.myWidth′. But this field always
holds the width of matrix, and thus this conjunct does not strictly
strengthen the postcondition.

Further, for benchmarks sor and moldyn, the inferred post-
conditions are still correct and are only slightly stronger than the
previous manual ones. Both benchmarks retain various intermedi-
ate results past the end of their computations. Roughly speaking,
our manual assertions for these benchmarks specify that the final
answer is independent of the number of threads used, while the in-
ferred specifications capture that these intermediate results are also
deterministic for any fixed number of threads.

Accuracy: Preconditions.
For all but two benchmarks (sor and sparsematmult), our

inferred preconditions are also as strong as our previous [8] manual
deterministic specifications. Further, these inferred preconditions,
except for moldyn’s and keysearch3’s, are equivalent to the
manual ones although they contain more conjuncts.

The inferred precondition for moldyn contains nthreads =
nthreads′, making it stronger than in our manual specification.

The stronger precondition for keysearch3 actually highlights
an error in the manual specification from [8]. One of the inputs
(partialkey) to the main computation is missing from the manual
precondition. But the conjunct partialkey = partialkey′ correctly
appear in the inferred precondition.

Limitations.
For the sor benchmark, our inferred precondition is missing two

input parameters on which the deterministic behavior depends. DE-
TERMIN fails to include these two parameters because they each
take on the same value in all of JGF test inputs for sor. Thus, DE-
TERMIN sees no evidence that these parameters are important for
determinism and removes them via our second heuristic. This ex-
ample shows the need for a sufficiently diverse set of test inputs and
executions in order to infer accurate deterministic specifications.

Similarly, the postcondition for tsp is incorrectly too strong, re-
quiring that two runs on the same input return the same tour. In fact,
two such runs could return different tours with the same minimal
cost, but our particular test inputs appear to have unique solutions.

Discussion.
For nearly all of our benchmarks, DETERMIN infers determinis-

tic preconditions and postconditions equivalent to, slightly stronger
than, or more accurate than those in our previous, manual specifi-
cations. Thus, we argue that DETERMIN can capture the intended
and natural deterministic behavior of parallel programs.

Further, although our automatically inferred specifications are
somewhat larger than the manual ones from [8], the total number
of inferred conjuncts remains quite small. In particular, we be-
lieve that pre- and postconditions with 5 to 15 conjuncts are small
enough to be fairly easily understood by a programmer. Thus, we
argue that such inferred specifications can help document the de-
terministic behavior of a routine or application for a programmer.
For example, the inferred specification for lufact corrected our
misunderstanding of the benchmark’s behavior.

Further, we argue that such automatically-inferred deterministic
specifications can be useful in discovering parallelism bugs through
anomaly detection. That is, from observing “normal” program ex-
ecutions, DETERMIN infers a specification of the typical, expected
deterministic behavior of a program. Then, if more in-depth testing
finds executions that are anomalous—i.e. that violate the inferred
specification—then those executions may exhibit bugs.

In [8], we combined deterministic specifications with a parallel
software testing tool in order to distinguish benign from harmful
races in these benchmarks. The specifications inferred by DETER-
MIN in this work are sufficiently similar to those manual specifica-
tions to serve the same purpose. In particular, these specifications
would allow us to distinguish the harmful data race that exists in
the raytracer benchmark from the other benign races.

7. ACKNOWLEDGMENTS
We would like to thank Chang-Seo Park and our anonymous re-

viewers for their valuable comments. This work supported in part
by Microsoft (Award #024263) and Intel (Award #024894) fund-
ing and by matching funding by U.C. Discovery (Award #DIG07-
10227), by Sun Microsystems and by matching funding from UC
MICRO (Award #08-113), by NSF Grants CNS-0720906 and CCF-
0747390, and by a DoD NDSEG Graduate Fellowship.

8. REFERENCES
[1] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as

partial orders from source code: from usage scenarios to
specifications. In 6th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT symposium
on the Foundations of Software Engineering. ACM, 2007.

[2] G. Agha. Actors: A Model of Concurrent Computation. MIT
Press, 1986.

[3] R. Alur, P. Cerny, G. Gupta, P. Madhusudan, W. Nam, and
A. Srivastava. Synthesis of Interface Specifications for Java
Classes. In Proceedings of POPL’05 (32nd ACM Symposium
on Principles of Programming Languages), 2005.

[4] G. Ammons, R. Bodik, and J. R. Larus. Mining
specifications. In ACM SIGPLAN-SIGACT symposium on
Principles of Programming Languages (POPL), 2002.

[5] C. Artho, K. Havelund, and A. Biere. High-level data races.
Software Testing Verification and Reliability, 13(4):207–227,
2003.

[6] G. Barnes. A method for implementing lock-free shared-data
structures. In ACM Symposium on Parallel Algorithms and
Architectures, pages 261–270, 1993.

[7] R. Bocchino, V. Adve, S. Adve, and M. Snir. Parallel
programming must be deterministic by default. In USENIX
Workship on Hot Topics in Parallelism (HOTPAR), 2009.

[8] J. Burnim and K. Sen. Asserting and checking determinism
for multithreaded programs. In 7th Joint Meeting of the
European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering. ACM, 2009.

[9] C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy:
Dynamic symbolic execution for invariant inference. In 30th
ACM/IEEE International Conference on Software
Engineering (ICSE), 2008.

[10] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP:
deterministic shared memory multiprocessing. In ACM
conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2009.

[11] Edinburgh Parallel Computing Centre. Java Grande Forum
benchmark suite.
www2.epcc.ed.ac.uk/computing/research_
activities/java_grande/index_1.html.

[12] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin.
Quickly detecting relevant program invariants. In
Proceedings of the 22nd International Conference on
Software Engineering, pages 449–458, June 2000.

[13] C. Flanagan and S. N. Freund. Atomizer: a dynamic
atomicity checker for multithreaded programs. In 31st ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 256–267, 2004.

[14] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for Java. In
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2002.

[15] C. Flanagan and R. M. Leino. Houdini, an annotation
assistant for ESC/Java. In Proceedings of the International
Symposium of Formal Methods Europe (FME), 2001.

[16] C. Flanagan and S. Qadeer. Types for atomicity. In ACM
SIGPLAN international workshop on Types in Languages
Design and Implementation (TLDI), 2003.

[17] C. Goues and W. Weimer. Specification mining with few
false positives. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS), 2009.

[18] S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. In Proceedings of the
International Conference on Software Engineering, 2002.

[19] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances in
dataflow programming languages. ACM Comput. Surv.,
36(1):1–34, 2004.

[20] A. Kaminsky. Parallel Java: A Unified API for Shared
Memory and Cluster Parallel Programming in 100% Java. In
21st IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2007), March 2007.

[21] E. A. Lee. The problem with threads. Computer,
39(5):33–42, May 2006.

[22] F. Logozzo. Automatic inference of class invariants. In
Proceedings of the 5th International Conference on
Verification, Model Checking and Abstract Interpretation
(VMCAI ’04), January 2004.

[23] H. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi,
U. Klusik, R. Loogen, G. Michaelson, R. Pena, S. Priebe,
et al. Comparing parallel functional languages:
Programming and performance. Higher-Order and Symbolic
Computation, 16(3):203–251, 2003.

[24] M. Z. Malik, A. Pervaiz, , and S. Khurshid. Generating
representation invariants of structurally complex data. In
TACAS, pages 34–49, 2007.

[25] R. Netzer and B. Miller. Detecting data races in parallel
program executions. In Advances in Languages and
Compilers for Parallel Computing. MIT Press, 1990.

[26] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo:
Efficient deterministic multithreading in software. In The
International Conference on Architectural Support for
Programming Languages and Operating Systems, Mar 2009.

[27] C. Sadowski, S. Freund, and C. Flanagan. SingleTrack: A
Dynamic Determinism Checker for Multithreaded Programs.
In European Symposium on Programming (ESOP), 2009.

[28] M. Taghdiri and D. Jackson. Inferring specifications to detect
errors in code. Automated Software Engg., 14(1):87–121,
2007.

[29] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A
language for streaming applications. Lecture Notes in
Computer Science, pages 179–196, 2002.

[30] N. Tillmann, F. Chen, and W. Schulte. Discovering likely
method specifications. In ICFEM, pages 717–736, 2006.

[31] C. von Praun and T. R. Gross. Object race detection. In ACM
SIGPLAN conference on Object Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2001.

[32] J. Whaley, M. C. Martin, and M. S. Lam. Automatic
Extraction of Object-Oriented Component Interfaces. In
Proceedings of ACM SIGSOFT ISSTA’02 (International
Symposium on Software Testing and Analysis), 2002.

[33] J. Yang and D. Evans. Dynamically inferring temporal
properties. In PASTE ’04, pages 23–28. ACM, 2004.

