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ABSTRACT
The trend towards processors with more and more parallel cores is
increasing the need for software that can take advantage of paral-
lelism. The most widespread method for writing parallel software
is to use explicit threads. Writing correct multithreaded programs,
however, has proven to be quite challenging in practice. The key
difficulty is non-determinism. The threads of a parallel applica-
tion may be interleaved non-deterministically during execution. In
a buggy program, non-deterministic scheduling will lead to non-
deterministic results—some interleavings will produce the correct
result while others will not.

We propose an assertion framework for specifying that re-
gions of a parallel program behave deterministically despite non-
deterministic thread interleaving. Our framework allows program-
mers to write assertions involving pairs of program states arising
from different parallel schedules. We describe an implementation
of our deterministic assertions as a library for Java, and evaluate
the utility of our specifications on a number of parallel Java bench-
marks. We found specifying deterministic behavior to be quite sim-
ple using our assertions. Further, in experiments with our asser-
tions, we were able to identify two races as true parallelism errors
that lead to incorrect non-deterministic behavior. These races were
distinguished from a number of benign races in the benchmarks.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification;
D.2.5 [Software Engineering]: Testing and Debugging; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs

General Terms
Reliability, Verification

1. INTRODUCTION
The semiconductor industry has hit the power wall—

performance of general-purpose single-core microprocessors can
no longer be increased due to power constraints. Therefore, to con-
tinue to increase performance, the microprocessor industry is in-
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stead increasing the number of processing cores per die. The new
“Moore’s Law” is that the number of cores will double every gen-
eration, with individual cores going no faster [6].

This new trend of increasingly parallel chips has made it clear
that we have to write parallel code in order to run software effi-
ciently. Unfortunately, parallel software is more difficult to write
and debug than its sequential counterpart. A key reason for this
difficulty is that parallel programs can show different behaviors de-
pending on how the executions of their parallel threads interleave.

The fact that executions of parallel threads can interleave with
each other in arbitrary fashion to produce different outputs is called
internal non-determinism or scheduler non-determinism. Internal
non-determinism is essential to make parallel threads execute si-
multaneously and to harness the power of parallel chips. However,
most of the sequential programs that we write are deterministic—
they produce the same output on the same input. Therefore, in
order to make parallel programs easy to understand and debug, we
need to make them behave like sequential programs, i.e. we need
to make parallel programs deterministic.

A number of ongoing research efforts aim to make parallel pro-
grams deterministic by construction. These efforts include the de-
sign of new parallel programming paradigms [47, 32, 28, 3, 31] and
the design of new type systems and annotations that could retrofit
existing parallel languages [4, 9]. But such efforts face two key
challenges. First, new languages see slow adoption and often re-
main specific to limited domains. Second, new paradigms often
include restrictions that can hinder general purpose programming.
For example, a key problem with new type systems is that they can
make programming more difficult and restrictive.

The most widespread method for writing parallel programs,
threads [26, 8, 12, 27], requires programmers to ensure determin-
ism. To aid programmers in writing deterministic programs, a num-
ber of tools and techniques have been developed. These tools at-
tempt to automatically find sources of non-determinism likely to be
harmful (i.e. to lead to non-deterministic output) such as data races
and high-level race conditions. A large body of work spanning
over 30 years has focused on data race detection. A data race oc-
curs when two threads concurrently access a memory location and
at least one of the accesses is a write. Both dynamic [13, 1, 41, 49,
11, 2, 43] and static [45, 17, 10, 18, 24, 16, 38, 34] techniques have
been developed to detect and predict data races in multi-threaded
programs. Although the work on data race detection has signifi-
cantly helped in finding determinism bugs in parallel programs, it
has been observed that (1) the absence of data races is not suffi-
cient to ensure determinism [5, 22, 19], and (2) data races do not
always cause non-deterministic results. In fact, race conditions are
often useful in gaining performance, while still ensuring high-level
deterministic behavior [7].



We argue that programmers should be provided with a frame-
work that will allow them to express deterministic behaviors of par-
allel programs directly and easily. Specifically, we should provide
an assertion framework where programmers can directly and pre-
cisely express the necessary deterministic behavior. On the other
hand, the framework should be flexible enough so that determinis-
tic behaviors can be expressed more easily than with a traditional
assertion framework. For example, when expressing the determin-
istic behavior of a parallel edge detection algorithm for images, we
should not have to rephrase the problem as a race detection prob-
lem; neither should we have to write a state assertion that relates the
output to the input, which would be complex and time-consuming.
Rather, we should simply be able to say that, if the program is exe-
cuted on the same image, then the output image remains the same
regardless of how the program’s parallel threads are scheduled.

In this paper, we propose such a framework for asserting that
blocks of parallel code behave deterministically. Formally, our
framework allows a programmer to give a specification for a block
P of parallel code as:

deterministic assume(Pre(s0, s
′
0)) {

P
} assert(Post(s, s′));

This specification asserts the following: Suppose P is executed
twice with potentially different schedules, once from initial state
s0 and once from s′0 and yielding final states s1 and s′1, respec-
tively. Then, if the user-specified pre-condition Pre holds over s0
and s′0, then s and s′ must satisfy the user-specified post-condition
Post.

For example, we could specify the deterministic behavior of a
parallel matrix multiply with:

deterministic assume(|A - A’| < 10−6 and
|B - B’| < 10−6) {

C = parallel_matrix_multiply_float(A, B);

} assert(|C - C’| < 10−6);

Note the use of primed variables A’, B’, and C’ in the above
example. These variables represent the state of the matrices A, B,
and C from a different execution. As such the predicates that we
write inside assume and assert are different from state pred-
icates written in a traditional assertion framework—these special
predicates relate a pair of states from different executions. We call
such a predicate a bridge predicate and an assertion using bridge
predicates a bridge assertion. A key contribution of this paper is
the introduction of these bridge predicates and bridge assertions.
We believe that these novel predicates can be used not only for de-
terministic specification, but also be used for other purposes such
as writing regression tests.

Our deterministic assertions provide a way to specify the correct-
ness of the parallelism in a program independently of the program’s
traditional functional correctness. By checking whether different
program schedules can non-deterministically lead to semantically
different answers, we can find bugs in a program’s use of paral-
lelism even when unable to directly check functional correctness—
i.e. that the program’s output is correct given its input. Inversely,
by checking that a parallel program behaves deterministically, we
can gain confidence in the correctness of its use of parallelism in-
dependently of whatever method we use to gain confidence in the
program’s functional correctness.

We have implemented our deterministic assertions as a library
for the Java programming language. We evaluated the utility of
these assertions by manually adding deterministic specifications

to a number of parallel Java benchmarks. We used an existing
tool to find executions exhibiting data and higher-level races in
these benchmarks and used our deterministic assertions to distin-
guish between harmful and benign races. We found it to be fairly
easy to specify the correct deterministic behavior of the benchmark
programs using our assertions, despite being unable in most cases
to write traditional invariants or functional correctness assertions.
Further, our deterministic assertions successfully distinguished the
two known harmful races in the benchmarks from the benign races.

2. DETERMINISTIC SPECIFICATION
In this section, we motivate and define our proposal for assertions

for specifying determinism.
Strictly speaking, a block of parallel code is said to be determin-

istic if, given any particular initial state, all executions of the code
from the initial state produce the exact same final state. In our spec-
ification framework, the programmer can specify that they expect a
block of parallel code, say P, to be deterministic with the following
construct:

deterministic {
P

}

This assertion specifies that if s and s′ are both program states
resulting from executing P under different thread schedules from
some initial state s0, then s and s′ must be equal. For example, the
specification:

deterministic {
C = parallel_matrix_multiply_int(A, B);

}

asserts that for the parallel implementation of matrix multiplication
(defined by function parallel_matrix_multiply_int),
any two executions from the same program state must reach the
same program state—i.e. with identical entries in matrix C—no
matter how the parallel threads are scheduled.

A key implication of knowing that a block of parallel code is
deterministic is that we may be able to treat the block as sequential
in other contexts. That is, although the block may have internal
parallelism, a programmer (or perhaps a tool) can hopefully ignore
this parallelism when considering the larger program using the code
block. For example, perhaps a deterministic block of parallel code
in a function can be treated as if it were a sequential implementation
when reasoning about the correctness of code calling the function.

Semantic Determinism.
The above deterministic specification is often too conservative.

For example, consider a similar example, but where A, B, and C are
floating-point matrices:

deterministic {
C = parallel_matrix_multiply_float(A, B);

}

In many programming languages, floating-point addition and mul-
tiplication are not associative due to rounding error. Thus, depend-
ing on the implementation, it may be unavoidable that the entries
of matrix C will differ slightly depending on the thread schedule.

In order to tolerate such differences, we must relax the determin-
istic specification:

deterministic {
C = parallel_matrix_multiply_float(A, B);

} assert(|C - C’| < 10−6);



This assertion specifies that, for any two matrices C and C’ re-
sulting from the execution of the matrix multiply from same initial
state, the entries of C and C’ must differ by only a small quantity
(i.e. 10−6).

Note that the above specification contains a predicate over two
states—each from a different parallel execution of deterministic
block. We call such a predicate a bridge predicate, and an assertion
using a bridge predicate a bridge assertion. Bridge assertions are
different from traditional assertions in that they allow one to write a
property over two program states coming from different executions
whereas traditional assertions only allow us to write a property over
a single program state.

Note also that such predicates need not be equivalence relations
on pairs of states. In particular, the approximate equality used
above is not an equivalence relation.

This relaxed notion of determinism is useful in many contexts.
Consider the following example which adds in parallel two items
to a synchronized set:

Set set = new SynchronizedTreeSet();
deterministic {

cobegin
set.add(3);
set.add(5);

coend
} assert(set.equals(set’));

If set is represented internally as a red-black tree, then a strict
deterministic assertion would be too conservative. The structure
of the resulting tree, and its layout in memory, will likely differ
depending on which element is inserted first, and thus the different
executions can yield different program states.

But we can use a bridge predicate to assert that, no matter what
schedule is taken, the resulting set is semantically equal. That is,
for objects set and set’ computed by two different schedules, the
equals method must return true because the sets must logically
contain the same elements. We call this semantic determinism.

Preconditions for Determinism.
So far we have described the following construct:

deterministic {
P

} assert(Post);

where Post is a predicate over two program states in different
executions resulting from different thread schedules1. That is, if
s and s′ are two states resulting from any two executions of P from
the same initial state, then Post(s, s′) holds.

The above construct could be rewritten in the following way:

deterministic assume(s0 == s′0) {
P

} assert(Post);

That is, if any two executions of P start from initial states s0 and
s′0, respectively, and if s and s′ are the resultant final states, then
s0 == s′0 implies that Post(s, s′) holds. The above rewritten
specification suggests that we can further relax the requirement of
s0 == s′0 by replacing it with a bridge predicate Pre(s0, s

′
0). For

example:

1Note that in the above construct we do not refer to the final states
s and s′, but we make them implicit by assuming that Post maps
a pair of program states to a Boolean value.

deterministic assume(set.equals(set’)) {
cobegin

set.add(3);
set.add(5);

coend
} assert(set.equals(set’));

The above specification states that if any two executions start from
sets containing the same elements, then after the execution of the
code, the resulting sets after the two executions must still contain
exactly the same elements.

Comparison to Traditional Assertions.
In summary, we propose the following construct for the specifi-

cation of deterministic behavior.

deterministic assume(Pre) {
P

} assert(Post);

Formally, it states that for any two program states s0 and s′0, if

• Pre(s0, s
′
0) holds

• an execution of P from s0 terminates and results in state s

• an execution of P from s′0 terminates and results in state s′

then Post(s, s′) must hold.
Note that the use of bridge predicates Pre and Post has

the same flavor as pre and post-conditions used for functions in
program verification. However, unlike traditional pre and post-
conditions, the proposed Pre and Post predicates relate pairs of
states from two different executions. In traditional verification, a
pre-condition is usually written as a predicate over a single program
state, and a post-condition is usually written over two states—the
states at the beginning and end of the function. For example:

foo() {
assume(x > 0);
old_x = x;
x = x * x;
assert(x == old_x*old_x);

}

The key difference between a post-condition and a Post predicate
is that a post-condition relates two states at different times along
a same execution, whereas a Post predicate relates two program
states in different executions.

Advantages of Deterministic Assertions.
Our deterministic specifications are a middle ground between the

implicit specification used in race detection—that programs should
be free of data races—and the full specification of functional cor-
rectness. It is a great feature of data race detectors that typically
no programmer specification is needed. However, manually deter-
mining which reported races are benign and which are bugs can be
time-consuming and difficult. We believe our deterministic asser-
tions, while requiring little effort to write, can greatly aid in distin-
guishing harmful from benign data races (or higher-level races).

One could argue that a deterministic specification framework is
unnecessary given that we can write the functional correctness of a
block of code using traditional pre- and post-conditions. For exam-
ple, one could write the following to specify the correct behavior
of parallel_matrix_multiply_int:

C = parallel_matrix_multiply_int(A, B);
assert(C == A × B);



We agree that if one can write a functional specification of a block
of code, then there is no need to write deterministic specification,
as functional correctness implies deterministic behavior.

The advantage of our deterministic assertions, however, are that
they provide a way to specify the correctness of just the use of par-
allelism in a program, independent of the program’s full functional
correctness. In many situations, writing a full specification of func-
tional correctness is difficult and time consuming. But, a simple
deterministic specification enables us to use automated technique
to check for parallelism bugs, such as harmful data races causing
semantically non-deterministic behavior.

Consider a parallel function parallel_edge_detection
that takes an image as input and returns an image where detected
edges have been marked. Relating the output to the input image
with traditional pre- and post-conditions would likely be quite chal-
lenging. However, it is simple to specify that the routine does not
have any parallelism bugs causing a correct image to be returned
for some thread schedules and an incorrect image for others:

deterministic assume(img.equals(img’)) {
result = parallel_edge_detection(img);

} assert(result.equals(result’));

where img.equals(img’) returns true iff the two images are
pixel-by-pixel equal.

For this example, a programmer could gain some confidence in
the correctness of the routine by writing unit tests or manually ex-
amining the output for a handful of images. He or she could then
use automated testing or model checking to separately check that
the parallel routine behaves deterministically on a variety of inputs,
gaining confidence that the code is free from concurrency bugs.

We believe that it is often difficult to come up with effective func-
tional correctness assertions. However, it is often quite easy to use
bridge assertions to specify deterministic behavior, enabling a pro-
grammer to check for harmful concurrency bugs. In the Evaluation
section, we provide several case studies to support this argument.

3. CHECKING DETERMINISM
There may be many potential approaches to checking or verify-

ing a deterministic specification, from testing to model checking to
automated theorem proving. In this section, we propose a simple
and incomplete method for checking deterministic specifications at
run-time.

The key idea of the method is that, whenever a deterministic
block is encountered at run-time, we can record the program states
spre and spost at the beginning and end of the block. Then, given
a collection of (spre, spost) pairs for a particular deterministic block
in some program, we can check a deterministic specification, albeit
incompletely, by comparing pairwise the pairs of initial and final
states for the block. That is, for a deterministic block:

deterministic assume(Pre) {
P

} assert(Post);

with pre- and post-predicates Pre and Post, we check for every
recorded pair of pairs (spre, spost) and (s′pre, s

′
post) that:

Pre(spre, s
′
pre) =⇒ Post(spost, s

′
post)

If this condition does not hold for some pair, then we report a de-
terminism violation.

To increase the effectiveness of this checking, we must record
pairs of initial and final states for deterministic blocks executed un-
der a wide variety of possible thread interleavings. Thus, in prac-

class Deterministic {

static void open()

static void close()

static void assume(Object o, Predicate p)

static void assert(Object o, Predicate p)

interface Predicate {
boolean apply(Object a, Object b)

}
}

Figure 1: Core deterministic specification API.

tice we likely want to combine our deterministic assertion check-
ing with existing techniques and tools for exploring parallel sched-
ules of a program, such as noise making [14, 46], active random
scheduling [42, 43], or model checking [48].

In practice, the cost of recording and storing entire program
states could be prohibitive. However, real determinism predicates
often depend on just a small portion of the whole program state.
Thus, we need only to record and store small projections of pro-
gram states. For example, for a deterministic specification with
pre- and post-predicate set.equals(set’) we need only to
save object set and its elements (possibly also the memory reach-
able from these objects), rather than the entire program memory.

4. DETERMINISM CHECKING LIBRARY
In this section, we describe the design and implementation of an

assertion library for specifying and checking determinism of Java
programs.

Note that, while it might be preferable to introduce a new syn-
tactic construct for specifying determinism, we instead provide the
functionality as a library for simplicity of the implementation.

4.1 Overview
Figure 1 shows the core API for our deterministic assertion li-

brary. Functions open and close specify the beginning and end
of a deterministic block. Deterministic blocks may be nested, and
each block may contain multiple calls to functions assume and
assert, which are used to specify the pre- and post-predicates of
deterministic behavior.

Each call assume(o, pre) in a deterministic block specifies part
of the pre-predicate by giving some projection o of the program
state and a predicate pre. That is, it specifies that one condition for
any execution of the block to compute an equivalent, deterministic
result is that pre.apply(o, o′) return true for object o′ from the
other execution.

Similarly, a call assert(o, post) in a deterministic block spec-
ifies that, for any execution satisfying every assume, predicate
post.apply(o, o′) must return true for object o′ from the other ex-
ecution.

At run-time, our library records every object (i.e. state projec-
tion) passed to each assert and assume in each deterministic
block, persisting them to some central location. We require that all
objects passed as state projections implement the Serializable
interface to facilitate this recording. (In practice, this does not seem
to be a heavy burden. Most core objects in the Java standard library



are serializable, including numbers, strings, arrays, lists, sets, and
maps/hashtables.)

Then, also at run-time, a call to assert(o, post) checks post
on o and all o′ saved from previous, matching executions of the
same deterministic block. If the post-predicate does not hold for
any of these executions, a determinism violation is immediately
reported. Deterministic blocks can contain many assert’s so that
determinism bugs can be caught as early as possible and can be
more easily localized.

For flexibility, programmers are free to write state projections
and predicates using the full Java language. However, it is a pro-
grammer’s responsibility to ensure that these predicates contain no
observable side effects, as there are no guarantees as to how many
times such a predicate may be evaluated in any particular run.

So that the library is easy to use, it tracks which threads are in
which deterministic blocks. Thus, a call to assume, assert,
or close is automatically associated with the correct enclosing
block, even when called from a spawned, child thread. The only
restriction on the location of these calls is that every assume call
in a deterministic block must occur before any assert.

Built-in Predicates.
For programmer convenience, we provide two built-in predicates

that are often sufficient for specifying pre- and post-predicates for
determinism. The first, Equals, returns true if the given ob-
jects are equal using their built-in equals method—that is, if
o.equals(o′). For many Java objects, this method checks seman-
tic equality—e.g. for integers, floating-point numbers, strings, lists,
sets, etc. Further, for single- or multi-dimensional arrays (which do
not implement such an equals method), the Equals predicate
compares corresponding elements using their equals methods.
Figure 2 gives an example with assert and assume using this
Equals predicate.

The second predicate, ApproxEquals, checks if two floating-
point numbers, or the corresponding elements of two floating-point
arrays, are within a given margin of each other. As shown in Fig-
ure 3, we found this predicate useful in specifying the deterministic
behavior of numerical applications, where it is unavoidable that the
low-order bits may vary with different thread interleavings.

4.2 Concrete Example: mandelbrot
Figure 2 shows the deterministic assertions we added to one of

our benchmarks, a program for rendering images of the Mandelbrot
Set fractal from the Parallel Java Library [30].

The benchmark first reads a number of integer and floating-point
parameters from the command-line. It then spawns several worker
threads, which each compute the hues for different segments of the
final image, storing them in shared array matrix. After wait-
ing for all of the worker thread to finish, the program encodes and
writes the image to a file given as a command-line argument.

To add determinism annotations to this program, we simply
opened a deterministic block just before the worker threads are
spawned and closed it just after they are joined. At the beginning of
this block, we added an assume call for each of the seven fractal
parameters, such as the image size and and color palette. At the
end of the block, we assert that the resulting array matrix should
be deterministic, however the worker threads are interleaved.

Note that it would be quite difficult to add assertions for the func-
tional correctness of this benchmark, as each pixel of the resulting
image is a complex function of the inputs (i.e. the rate at which a
particular complex sequence diverges). Further, there do not seem
to be any simple traditional invariants on the program state or out-
puts which would help identify a parallelism bug.

main(String args[]) {
// Read parameters from command-line.
...

// Pre-predicate: equal parameters.
Predicate equals = new Equals();
Deterministic.open();
Deterministic.assume(width, equals);
Deterministic.assume(height, equals);
...
Deterministic.assume(gamma, equals);

// spawn threads to compute fractal
int matrix[][] = ...;
...

Deterministic.assert(matrix, equals);
Deterministic.close();

// write fractal image to file
...

}

Figure 2: Deterministic assertions for a Mandelbrot Set im-
plementation from the Parallel Java Library [30].

4.3 Implementation
Due to the simple design, we were able to implement this de-

terministic assertion library in only a few hundred lines of Java
code. We use the Java InheritableThreadLocal class to
track which threads are in which deterministic blocks (and so that
spawned child threads inherit the enclosing deterministic block
from their parent).

Currently, pairs of initial and final states for the deterministic
blocks of an application are just recorded in a single file in the
application’s working directory. Blocks are uniquely identified by
their location in an application’s source (accessible through, e.g., a
stack trace). When a determinism violation is detected, a message
is printed and the application is halted.

5. EVALUATION
In this section, we describe our efforts to validate two claims

about our proposal for specifying and checking deterministic par-
allel program execution:

1. First, deterministic specifications are easy to write. That is,
even for programs for which it is difficult to specify tradi-
tional invariants or functional correctness, it is relatively easy
for a programmer to add deterministic assertions.

2. Second, deterministic specifications are useful. When com-
bined with tools for exploring multiple thread schedules, de-
terministic assertions catch real parallelism bugs that lead to
semantic non-determinism. Further, for traditional concur-
rency issues such as data races, these assertions provide some
ability to distinguish between benign cases and true bugs.

To evaluate these claims, we used a number of benchmark pro-
grams from the Java Grande Forum (JGF) benchmark suite [15],
the Parallel Java (PJ) Library [30], and elsewhere. The names
and sizes of these benchmarks are given in Table 1. The JGF



main(String args[]) {
..

// Pre-predicate: equal parameters.
Deterministic.open();
Predicate equals = new Equals();
Deterministic.assume(mm, equals);
Deterministic.assume(PARTSIZE, equals);

// spawn worker threads
double ek[] = ...;
double epot[] = ...;
double vir[] = ...;
...

// Deterministic final energies.
Predicate apx = new ApproxEquals(1e-10);
Deterministic.assert(ek[0], apx);
Deterministic.assert(epot[0], apx);
Deterministic.assert(vir[0], apx);
Deterministic.close();

...
}

// worker thread
void run() {

... 100 lines of initialization ...
particle[] particles = ...;
double force[] = ...;

for (int i = 0; i < num_iters; i++) {
// update positions and velocities
...
synchronizeBarrier()
Predicate pae =

new ParticleApproxEquals(1e-10);
Deterministic.assert(particles, pae);
synchronizeBarrier()

// update forces
... 100 lines plus library calls ...
synchronizeBarrier()
Predicate apx =

new ApproxEquals(1e-10);
Deterministic.assert(force, apx);
synchronizeBarrier()

// temperature scale + sum energy
... 40 lines ...
synchronizeBarrier();
Deterministic.assert(ek, apx);
Deterministic.assert(epot, apx);
Deterministic.assert(vir, apx);
synchronizeBarrier();

}
}

Figure 3: Deterministic assertions for moldyn, a molecular
dynamics simulator from the Java Grande Forum Benchmark
Suite [15].

benchmarks include five parallel computation kernels—for suc-
cessive order-relaxation (sor), sparse matrix-vector multiplication
(sparsematmult), coefficients of a Fourier series (series),
cryptography (crypt), and LU factorization (lufact)—as
well as a parallel molecular dynamic simulator (moldyn), ray
tracer (raytracer), and Monte Carlo stock price simulator
(montecarlo). Benchmark tsp is a parallel Traveling Sales-
man branch-and-bound search [49]. These benchmarks are stan-
dard, and have been used to evaluate many previous analyses for
parallel programs (e.g. [35, 19, 43]). The PJ benchmarks include
an app computing a Monte Carlo approximation of π (pi), a par-
allel cryptographic key cracking app (keysearch3), an app for
parallel rendering Mandelbrot Set images (mandelbrot), and a
parallel branch-and-bound search for optimal phylogenetic trees
(phylogenetic). Note that the benchmarks range from a few
hundred to a few thousand lines of code, with the Parallel Java
benchmarks relying on an additional 10-20,000 lines of library
code from the Parallel Java Library (for threading, synchronization,
and other functionality).

5.1 Ease of Use
We evaluate the ease of use of our deterministic specification

by manually adding assertions to our benchmark programs. One
deterministic block was added to each benchmark.

The third column of Table 1 records the number of lines of spec-
ification (and lines of custom predicate code) added to each bench-
mark. Overall, the specification burden is quite small. Indeed,
for the majority of the programs, an author was able to add deter-
ministic assertions in only five to ten minutes per benchmark, de-
spite being unfamiliar with the code. In particular, it was typically
not difficult to both identify regions of code performing parallel
computation and to determine from documentation, comments, or
source code which results were intended to be deterministic. Fig-
ures 2 and 3 show the (slightly cleaned up) assertions added to the
mandelbrot and moldyn benchmarks.

The added assertions were correct on the first attempt for all but
one benchmark. (For phylogeny, the resulting phylogenetic tree
was erroneously specified as deterministic, when, in fact, there are
many correct optimal trees. The specification was modified to as-
sert only that the optimal score must be deterministic.)

The two predicates provided by our assertion library were suffi-
cient for all but one of the benchmarks. For the JGF montecarlo
benchmark, the authors had to write a custom equals and
hashCode method for two classes—34 total lines of code—in or-
der to assume and assert that two sets, one of initial tasks and one
of results, should be deterministic.

Further Deterministic Assertions.
Three of the benchmarks—sor, moldyn, and lufact—use

barriers to synchronize their worker threads at many points during
their parallel computations. These synchronization points provide
locations where partial results of the computation can be specified
to be deterministic. For example, as shown in Figure 3, we can as-
sert in moldyn that the deterministic particle positions and forces
should be computed in every iteration. Such intermediate assertions
aid the early detection and localization of non-determinism errors.

For these three benchmarks, an author was able to add intermedi-
ate assertions at important synchronization barriers in only another
fifteen to thirty minutes per benchmark. This adds roughly 25,
35, and 10 lines of specification, respectively, to sor, moldyn,
lufact. Further, for the moldyn benchmark, this requires writ-
ing a custom predicate ParticleApproxEquals for compar-
ing two arrays of particle objects for approximate equality of



Benchmark
Approximate
Lines of Code
(App + Library)

Lines of
Specification
(+ Predicates)

Threads
Data Races High-Level Races

Found Determinism Found Determinism
Violations Violations

JGF

sor 300 6 10 2 0 0 0
sparsematmult 700 7 10 0 0 0 0
series 800 4 10 0 0 0 0
crypt 1100 5 10 0 0 0 0
moldyn 1300 6 10 2 0 0 0
lufact 1500 9 10 1 0 0 0
raytracer 1900 4 10 3 1 0 0
montecarlo 3600 4 + 34 10 1 0 2 0

PJ

pi 150 + 15,000 5 4 9 0 1+ 1
keysearch3 200 + 15,000 6 4 3 0 0+ 0
mandelbrot 250 + 15,000 10 4 9 0 0+ 0
phylogeny 4400 + 15,000 8 4 4 0 0+ 0
tsp 700 4 5 6 0 2 0

Table 1: Summary of experimental evaluation of deterministic assertions. A single deterministic block specification was added to each
benchmark. Each specification was checked on executions with races found by the CALFUZZER [43, 37, 29] tool.

their positions and velocities, as well as customizing the serializa-
tion of particle objects.

Note, however, that care must be taken with such additional as-
sertions to not capture an excessive amount of data. For example,
it is not feasible to assert in every iteration of a parallel computa-
tion that a large intermediate matrix is deterministic—this requires
serializing and checking a large enough quantity of data to have
significant overhead.

Discussion.
More experience, or possibly user studies, would be needed to

conclude decisively that our assertions are easier to use than exist-
ing techniques for specifying that parallel code is correctly deter-
ministic. However, we believe our experience is quite promising.
In particular, writing assertions for the full functional correctness
of the parallel regions of these programs seemed to be quite dif-
ficult, perhaps requiring implementing a sequential version of the
code and asserting that it produces the same result. Further, there
seemed to be no obvious simpler, traditional assertions that would
aid in catching non-deterministic parallelism.

Despite these difficulties, we found that specifying the natural
deterministic behavior of the benchmarks with our bridge asser-
tions required little effort.

5.2 Effectiveness
To evaluate the utility of our deterministic specifications in find-

ing true parallelism bugs, we used a modified version of the CAL-
FUZZER [43, 37, 29] tool to find real races in the benchmark pro-
grams, both data races and higher level races (such as races to ac-
quire a lock). For each such race, we ran 10 trials using CAL-
FUZZER to create real executions with these races and to randomly
resolve the races (i.e. randomly pick a thread to “win”). We turned
on run-time checking of our deterministic assertions for these trials,
and recorded all found violations.

Table 1 summarizes the results of these experiments. For each
benchmark, we indicate the number of real data races and higher-
level races we observed. Further, we indicate how many of these
races led to determinism violations in any execution.

In these experiments, the primary computational cost is from
CALFUZZER, which typically has an overhead in the range of 2x-
20x for these kinds of compute bound applications. We have not
carefully measured the computational cost of our deterministic as-

sertion library. For most benchmarks, however, the cost of serializ-
ing and comparing a computation’s inputs and outputs is dwarfed
by the cost of the computation itself—e.g. consider the cost of
checking that two fractal images are identical versus the cost of
computing each fractal in the first place.

Determinism Violations.
We found two cases of non-deterministic behavior. First, a

known data race in the raytracer benchmark, due the use of
the wrong lock to protect a shared sum, can cause an incorrect final
answer to be computed.

Second, the pi benchmark can yield a non-deterministic
answer given the same random seed because of insuffi-
cient synchronization of a shared random number genera-
tor. In each Monte Carlo sample, two successive calls to
java.util.Random.nextDouble() are made. A con-
text switch between these calls changes the set of samples gen-
erated. Similarly, nextDouble() itself makes two calls to
java.util.Random.next(), which atomically generates up
to 32 pseudo-random bits. A context switch between these two calls
changes the generated sequence of pseudo-random doubles. Thus,
although java.util.Random.nextDouble() is thread-safe
and free of data races, scheduling non-determinism can still lead to
a non-deterministic result. (This behavior is known—the Parallel
Java library provides several versions of this benchmark, one of
which does guarantee a deterministic result for any given random
seed.)

Benign Races.
The high number of real data races for these benchmarks

is largely due to benign races on volatile variables used for
synchronization—for example, to implement a tournament barrier
or a custom lock. Although CALFUZZER does not understand
these sophisticated synchronization schemes, our deterministic as-
sertions automatically provide some confidence that these races are
benign because, over the course of many experiment runs, they did
not lead to non-deterministic final results.

Note that it can be quite challenging to verify by hand that these
races are benign. On inspecting the benchmark code and these data
races, an author several times believed he had found a synchro-
nization bug. But on deeper inspection, the code was found to be
correct in all such cases.



The number of high-level races is low for the JGF bench-
marks because all but montecarlo exclusively use volatile vari-
ables (and thread joins) for synchronization. Thus, all observable
scheduling non-determinism is due to data races.

The number of high-level races is low for the Parallel Java bench-
marks because they primarily use a combination of volatile vari-
ables and atomic compare-and-set operations for synchronization.
Currently, the only kind of high-level race our modified CAL-
FUZZER recognizes is a lock race. Thus, while we believe there
are many (benign) races in the ordering of these compare-and-set
operations, CALFUZZER does not report them. The one high-level
race for pi, indicated in the table and described above, was con-
firmed by hand.

Discussion.
Although our checking of deterministic assertions is sound—an

assertion failure always indicates that two executions with match-
ing initial states can yield non-matching final states—it is incom-
plete. Parallelism bugs leading to non-determinism may still exist
even when testing fails to find any determinism violations.

However, in our experiments we successfully distinguished the
known harmful races from the benign ones in only a small num-
ber of trials. Thus, we believe our deterministic assertions can help
catch harmful non-determinism due to parallelism, as well as sav-
ing programmer effort in determining whether or not real races and
other potential parallelism bugs can lead to incorrect program be-
havior.

6. DISCUSSION
In this section, we compare the concepts of atomicity and deter-

minism. Further, we discuss several other possible uses for bridge
predicates and assertions.

6.1 Atomicity versus Determinism
A concept complementary to determinism in parallel programs

is atomicity. A block of sequential code in a multi-threaded pro-
gram is said to be atomic [22] if for every possible interleaved ex-
ecution of the program there exists an equivalent execution with
the same overall behavior in which the atomic block is executed
serially (i.e. the execution of the atomic block is not interleaved
with actions of other threads). Therefore, if a code block is atomic,
the programmer can assume that the execution of the code block
by a thread cannot be interfered with by any other thread. This
enables programmers to reason about atomic code blocks sequen-
tially. This seemingly similar concept has the following subtle dif-
ferences from determinism:

1. Atomicity is the property about a sequential block of code—
i.e. the block of code for which we assert atomicity has a
single thread of execution and does not spawn other threads.
Note that a sequential block is by default deterministic if it is
not interfered with by other threads. Determinism is a prop-
erty of a parallel block of code. In determinism, we assume
that the parallel block of code’s execution is not influenced
by the external world.

2. In atomicity, we say that the execution of a sequential block
of code results in the same state no matter how it is sched-
uled with other external threads, i.e. atomicity ensures that
external non-determinism does not interfere with the execu-
tion of an atomic block of code. In determinism, we say
that the execution of a parallel block of code gives the same
semantic state no matter how the threads inside the block

are scheduled—i.e. determinism ensures that internal non-
determinism does not result in different outputs.

In summary, atomicity and determinism are orthogonal concepts.
Atomicity reasons about a single thread under external non-
determinism, whereas determinism reasons about multiple threads
under internal non-determinism.

Here we focus on atomicity and determinism as program spec-
ifications to be checked. There is much work on atomicity as a
language mechanism, in which an atomic specification is instead
enforced by some combination of library, run-time, compiler, or
hardware support. One could similarly imagine enforcing deter-
ministic specifications through, e.g., compiler and run-time mech-
anisms [4, 9].

6.2 Other Uses of Bridge Predicates
We have already argued that bridge predicates simplify the task

of directly and precisely writing deterministic properties in parallel
programs. However, we believe that bridge predicates could pro-
vide us a simple, but powerful tool to express correctness proper-
ties in many other situations. For example, if we have two versions
of a program P1 and P2 and if we expect them to produce the
same output on same input, then we can easily assert this using our
framework as follows:

deterministic assume(Pre) {
if (nonDeterministicBoolean()) {

P1
} else {

P2
}

} assert(Post);

where Pre requires that the inputs are the same and Post specifies
that the outputs will be the same.

In particular, if a programmer has written both a sequential and
parallel version of a piece of code, he or she can specify that the
two versions are semantically equivalent with an assertion like:

deterministic assume(A==A’ and B==B’){
if (nonDeterministicBoolean()) {

C = par_matrix_multiply_int(A, B);
} else {

C = seq_matrix_multiply_int(A, B);
}

} assert(C==C’);

where nonDeterministicBoolean() returns true or
false non-deterministically.

Recall the way we have implemented our determinism checker
in Java—we serialize a pair of projections of the input and output
states for each execution to the file-system. This particular im-
plementation allows us to quickly write regression tests simply as
follows:

deterministic assume(Pre) {
P

} assert(Post);

where Pre asserts that the inputs are the same and Post asserts
that the outputs are the same. In the above code, we simply as-
sert that the input-output behavior of P remains the same even if
P changes over time, but maintains the same input-output behavior.
The serialized input and output states implicitly store the regression
test on the file-system.



Further, we believe there is a wider class of program properties
that are easy to write in bridge assertions but would be quite diffi-
cult to write otherwise. For example, consider the specification:

deterministic assume(set.size() == set’.size()) {
P

} assert(set.size() == set’.size());

This specification requires that sequential or parallel program
block P transforms set so that its final size is the same function
of its initial size independent of its elements. The specification is
easy to write even in cases where the exact relationship between the
initial and final size might be quite complex and difficult to write.
It is not entirely clear, however, when such properties would be
important or useful to specify/assert.

7. RELATED WORK
As discussed in Section 1, there is a large body of work attacking

harmful program non-determinism by detecting data races. There
has also been recent work on detecting or eliminating other sources
of non-determinism such as high-level races [49, 5] and atomicity
violations [21, 19, 20, 37].

For more than forty years, assertions—formal constraints on pro-
gram behavior embedded in a program’ source—have been used
to specify and prove the correct behavior of sequential [23, 25]
and parallel [36] programs. More recently, assertions have found
widespread use as a tool for checking at run-time for software faults
to enable earlier detection and easier debugging of software er-
rors [39, 33]. In this work, we propose bridge assertions, which
relate pairs of states from different program executions.

Sadowski, et al., [40] propose a different notion of determinism,
one that is a generalization of atomicity. They say that a paral-
lel computation is deterministic if is both free from external in-
terference (externally serializable) and if its threads communicate
with each other in a strictly deterministic fashion (internal conflict
freedom). That is, for a computation to be deterministic not only
must it contain no data races, but the partially-ordered sequence of
lock operations and other synchronization events must be identical
on every execution. These conditions ensure that every schedule
produces bit-wise identical results. Further, [40] proposes a sound
dynamic determinism analysis that can identify determinism viola-
tions in a single execution of a program under test.

This form of determinism from [40] is much more strict than
the determinism proposed in this work. Our deterministic spec-
ifications can be applied to programs, such as those using locks
or shared buffers, in which internal threads communicate non-
deterministically, but still produce deterministic final results. Fur-
ther, we allow users to provide custom predicates to specify what
is means for the results of two different thread schedules to be se-
mantically deterministic.

Siegel, et al., [44] propose a technique for combining symbolic
execution with model checking to verify that parallel, message-
passing numerical programs compute equivalent answers to their
sequential implementations.

8. CONCLUSION
We have introduced bridge predicates and bridge assertions for

relating pairs of states across different executions. We have shown
how these predicates and assertions can be used to easily and di-
rectly specify that a parallel computation is deterministic. And we
have shown that such specifications can be useful in finding parallel
non-determinism bugs and in distinguishing harmful from benign
races. Further, we believe that bridge assertions may have other
potential uses.
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