
Heuristics for Scalable Dynamic Test Generation
Jacob Burnim

EECS, UC Berkeley
Email: jburnim@cs.berkeley.edu

Koushik Sen
EECS, UC Berkeley

Email: ksen@cs.berkeley.edu

Abstract—Recently there has been great success in using
symbolic execution to automatically generate test inputs for small
software systems. A primary challenge in scaling such approaches
to larger programs is the combinatorial explosion of the path
space. It is likely that sophisticated strategies for searching this
path space are needed to generate inputs that effectively test
large programs (by, e.g., achieving significant branch coverage).
We present several such heuristic search strategies, including a
novel strategy guided by the control flow graph of the program
under test. We have implemented these strategies in CREST, our
open source concolic testing tool for C, and evaluated them on two
widely-used software tools, grep 2.2 (15K lines of code) and Vim
5.7 (150K lines). On these benchmarks, the presented heuristics
achieve significantly greater branch coverage on the same testing
budget than concolic testing with a traditional depth-first search
strategy.

I. INTRODUCTION

Testing with manually generated inputs is the predominant
technique in industry to ensure software quality – such testing
accounts for 50–80% of the typical cost of software develop-
ment. But manual test generation is expensive, error-prone, and
rarely exhaustive. Thus, several techniques have been proposed
to automatically generate test inputs.

A simple and effective technique for automated test genera-
tion is random testing [1], [2], [3], [4]. In random testing, the
program under test is simply executed on randomly-generated
inputs. A key advantage of random testing is that it scales well
in the sense that random test input generation takes negligible
time. However, random testing is extremely unlikely to test all
possible behaviors of a program

A number of symbolic techniques for automated test gen-
eration [5], [6] have been proposed to address the limitations
of random testing. Such techniques attempt to symbolically
execute a program under test along all possible program
paths, generating and solving constraints to produce concrete
inputs that test each path. Recently, concolic testing [7], [8]
and a related technique [9] have been proposed which run
symbolic execution simultaneously with concrete executions.
These approaches are generally more scalable in practice
because they can use the concrete program values to reason
precisely about complex data structures as well as to simplify
intractable constraints.

Although symbolic and concolic techniques have been
shown to be very effective in testing smaller programs, these
approaches fail to scale to larger programs in which only a tiny
fraction of the huge number of possible program paths can be
explored. A natural question is how to devise search strategies

that could quickly cover a significant portion of the branches
in a test program despite searching only a small fraction of
the program’s path space.

We propose a search strategy that is guided by the static
structure of the program under test, namely the control flow
graph (CFG). In this strategy, we choose branches to negate
for the purpose of test generation based on their distance in
the CFG to currently uncovered branches. We experimentally
show that this greedy approach to maximizing the branch
coverage helps to improve such coverage faster, and to achieve
greater final coverage, than the default depth-first search
strategy of concolic testing.

We further propose two random search strategies. While in
traditional random testing a program is run on random inputs,
these two strategies test a program along random execution
paths. The second attempts to sample uniformly from the space
of possible program paths, while the third is a variant we have
found to be more effective in practice.

We have implemented these search strategies in CREST, an
open-source prototype test generation tool for C, and experi-
mentally validated the strategies on three benchmarks ranging
up to 150K lines of code. Our experiments demonstrate that
these search strategies can more effectively search the path
space of a test program than either random testing or depth-
first concolic search.

II. CONCOLIC SEARCH STRATEGIES

In this section, we contrast our three proposed concolic
search strategies with a traditional depth-first search. Due
to space constraints, we describe these search strategies by
example, leaving the formal details to the accompanying
technical report. Also omitted are the now standard details
of concolic execution [7], [8].

Figure 1 contains a short program in a C-like imperative
language. We use this program as our running example to
illustrate the concolic search strategies, treating its two integer
inputs x and y as symbolic. For a conditional statement, we
call the first statement in the true and false blocks a pair of
branches. Thus, in the example program the pairs of branches
are (l1, l2), (l6, l7), (l10, l13), and (l11, l12).

A concolic search strategy operates on full,
concrete executions through the test program – e.g.
l0, l1, l5, l7, l8, l3, l9, l13, l14, l4, corresponding to a run
on inputs x = 1, y = 0 – along with symbolic path
constraints – e.g. x > y ∧ y ≤ 0 ∧ x 6= 4. For such an
execution, a strategy must select one of the alternate branches

main(x, y) {
l0: if (x > y)
l1: z = f(y);

else
l2: z = y;
l3: g(x, z);
l4: return;

}

int f(a) {
l5: if (a > 0)
l6: ABORT;

else
l7: ;
l8: return -a;

}

g(a, b) {
l9: if (a == 4)
l10: if (2*b > 9)
l11: ABORT;

else
l12: ;

else
l13: print b-a;
l14: return;

}

not_called(a) {
l15: b = f(a)
l16: print 2*b;
l17: return;

}
Fig. 1. Example program.

the path could have taken – e.g. l2, l6, and l10 – and then try
to solve modified path constraints to find inputs which lead
the program down the new branch.

A. Bounded Depth-First Search.

Suppose our initial execution is on inputs x = 0, y = 0,
yielding the concrete execution P0 = l0, l2, l3, l9, l13, l14, l4.
This execution passes through two conditional statements, and
has path constraints x ≤ y ∧ x 6= 4.

The depth-first search (DFS) first attempts to force the first
branch l2 to l1, by solving path constraint x > y, yielding,
e.g., x = 1, y = 0. Executing on these inputs gives concrete
path P1 = l0, l1, l5, l7, l8, l3, l9, l13, l14, l4 with path constraints
x > y ∧ y ≤ 0 ∧ x 6= 4.

The DFS recurses on P1, forcing the second branch along
P1 from l7 to l6 by solving x > y ∧ y > 0, perhaps yielding
x = 2, y = 1. These inputs give execution P2 = l0, l1, l5, l6,
which reaches the ABORT at l6. The DFS recurses on P2,
but there are no further branches to explore, so this second
recursive call immediately returns. Continuing to process P1,
the DFS will attempt to force l13 to l10, and will recurse on
the resulting path.

The search ends when all feasible program paths have been
explored. For a bound d > 0, we can also restrict the search to
forcing the first d feasible branches along any path. (A branch
along a path is feasible if we can solve for inputs for which
the branch is and is not taken.) Such a search will explore 2d

execution paths, as long as all paths have at least d feasible
branches.

B. Control-Flow Directed Search.

The goal of the control-flow directed search strategy is to
use the static structure of the program under test to guide the
dynamic search of the program’s path space. In particular, to
achieve high coverage of the test program, we want to guide
the search towards paths which reach previously uncovered
branches.

Thus, we construct a weighted, static call and control flow
graph for the program under test. First, we build the control
flow graph (CFG) for each function, giving the edges from

a conditional to its two branches weight one and all other
edges weight zero. In the example program, the four methods
have edges: (l0, l1)∗, (l0, l2)∗, (l1, l3), (l2, l3), (l3, l4) and
(l5, l6)∗, (l5, l7)∗, (l7, l8), and (l9, l10)∗, (l9, l13)∗, (l10, l11)∗,
(l10, ll12)

∗, (l12, l14), (l13, l14) and (l15, l16), (l16, l17), with
the starred edges having weight one. Additionally, we add a
zero-weight edge from each call site to the called function:
(l1, l5), (l3, l9), and (l15, l5).

For some set of uncovered or target branches, we can
compute with a breadth-first search the minimum distance
from every branch to one of the targets. Given an execution of
the test program, CfgDirectedSearch tries to force execution
down the branches with smallest distances, leading the search
towards the uncovered/target branches.

For example, if only branch l11 remained uncovered we
would assign distance 0 to l11, distance 1 to l10, distance 2 to
l1 and l2, and infinite distance to l6, l7, l12, and l13. Note that
the branches in f have infinite distance because there are no
edges from called functions back to their call sites – we make
the simplifying assumption that all called functions return and
that we can ignore the branches traversed inside a function
when trying to reach a later branch.

Given the above distances and execution x = 1, y = 0 with
path P0 = l0, l1, l5, l7, l8, l3, l9, l13, l14, l4 with path constraints
x > y ∧ y ≤ 0∧ x 6= 4, the CFG-directed search immediately
tries to force branch l13 to l10 because l10 has the minimum
distance, 1, among the possible alternate branches l2, l6, and
l10. Solving x > y∧y ≤ 0∧x = 4 yields e.g. x = 4, y = 0 and
P1 = l0, l1, l5, l7, l8, l3, l9, l10, l12, l14 and x > y∧y ≤ 0∧x =
4∧−2y ≤ 9. The search will then force l12 to l11, because l11
has distance 0. It will solve x > y∧y ≤ 0∧x = 4∧−2y > 9 to
get, e.g., x = 4, y = −5, which drive the program to ABORT
at l11.

Unlike depth-first search, the search can skip over the
branches in main and f because it uses the static structure
of the program to guide the search more directly towards a
relevant part of the path space.

As presented so far, the CFG-directed search is greedy,
always forcing execution down the branch with minimal
distance to a target. In practice, however, the search may
drive execution through a branch l with some distance d, but
then find that none of the paths from l to a target branch are
feasible. We need mechanisms both for revising our distances
for branches – i.e. heuristically updating our local estimates for
how hard it is to reach a target branch – and for backtracking
or restarting the search. These details can be found in the
technical report.

C. Uniform Random Search.

Taking inspiration from the effectiveness of widely-used
random testing, in which a program is executed on random
inputs, we propose a search strategy which executes a program
along random paths. Such a strategy avoids the problem in
random testing that often many inputs are used that lead to
the same execution paths and are thus redundant. Further, for
branches that are reachable by only a very small fraction of the

inputs, random execution paths can often cover such branches
with much higher probability than random inputs.

Given some path P , the UniformRandomSearch strategy
will walk down the path, forcing each branch with proba-
bility 1/2. For example, suppose the initial path is P0 =
l0, l2, l3, l9, l13, l14, l4, corresponding to inputs x = 0, y = 0.
The search considers the first branch l2 and flips a coin –
if the result is heads it will force the execution from l2 to
l1. Suppose it is heads. Then, solving the path constraints
will give, e.g., x = 1, y = 0 and new path P1 =
l0, l1, l5, l7, l8, l3, l9, l13, l14, l4.

The search will then move on to the second branch l7
(of P1). Suppose the coin is tails this time, and then heads
for the third branch l13. Solving the path constraints yields,
e.g., x = 4, y = 0, and path P2 through l10: P2 =
l0, l1, l5, l7, l8, l3, l9, l10, l12, l14. Finally, suppose the coin is
tails for the final branch l12.

It can be shown that UniformRandomSearch will produce
some particular execution with L feasible branches with prob-
ability 2−L, running the solver and test program an expected
L/2 times.

D. Random Branch Search.

Although the previous strategy in a certain sense samples
the path space uniformly at random, it requires many runs of
the program under test to do so. We found, after trial-and-error,
an even simpler random search strategy that is more effective
in practice.

In this strategy, RandomBranchSearch, we simply pick one
of the branches along the current path at random, and then
force the execution to not take the branch. The strategy just
repeats this step over and over, possibly with random restarts,
taking some random walk through the path space.

III. EVALUATION AND IMPLEMENTATION

We have implemented our search strategies in CREST, a
prototype test generation tool for C. CREST uses CIL [10] to
instrument C source files and to extract control-flow graphs,
and Yices [11] to solve path constraints. CREST is open source
software and is available at http://crest.googlecode.com/.

We experimentally evaluated the effectiveness of our search
strategies by running CREST on replace (600 lines of C
code), the largest program in the Siemens Benchmark Suite,
and two popular open-source applications, grep 2.2 (15K
lines) and Vim 5.7 (150K lines).

For each benchmark, we compare the performance of the
different search strategies over a fixed number of iterations –
i.e. runs of the instrumented program. We believe this is an
appropriate measure for the testing budget, because, for larger
programs, we expect the cost of concrete and symbolic execu-
tion to dominate processing done by the strategies themselves.

Experiments were run on 2GHz Core2 Duo servers with
2GB of RAM and running Debian GNU/Linux. All uncon-
strained variables are initially set to zero.

For both grep and Vim, the way we instrument and run
the tested programs (e.g. with fixed-size inputs and fixed

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500 3000

br
an

ch
es

 c
ov

er
ed

iterations

random testing
BoundedDFS (depth 14)
UniformRandomSearch
RandomBranchSearch

CfgDirectedSearch

(a) replace, with 40 symbolic characters as input (30 for DFS). Contains
200 branches, all of which are reachable. CREST runs 50+ iterations/sec.

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500 3000 3500 4000

br
an

ch
es

 c
ov

er
ed

iterations

random testing
BoundedDFS (depth 12)
UniformRandomSearch
RandomBranchSearch

CfgDirectedSearch

(b) grep 2.2, with 60 characters as input (45 for DFS). Contains 4184
branches, an estimated 2854 of which are reachable given our testing.
CREST runs 40 iterations/sec.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 500 1000 1500 2000 2500 3000 3500 4000

br
an

ch
es

 c
ov

er
ed

iterations

random testing
BoundedDFS (depth 12)
UniformRandomSearch
RandomBranchSearch

CfgDirectedSearch

(c) Vim 5.7, with 20 characters as input. Contains 39166 branches, an
estimated 23400 of which are reachable given our testing. 2-3 sec/iteration.

Fig. 2. Branch coverage achieved on the three benchmarks by the different
search strategies and by random testing over a fixed number of iterations. All
plots are averages over three runs.

command-line arguments) restricts the set of possible program
behaviors. Thus, in addition to reporting absolute branch
coverage, we report relative coverage – the (estimated) frac-
tion of reachable branches covered. We estimate the number
of reachable branches by summing the branches from each
function that was reached by any test run.

A. Replace.

replace is a 600-line text processing program, the largest
in the Siemens Benchmark Suite [12]. We ran replace
with 10-symbolic-character source and destination patterns (5
for bounded DFS) and a 20-symbolic-character line of text
in which to substitute. A minor optimization is needed for
the CFG-directed search on this benchmark, to handle the
small program size, the details of which are omitted for space
reasons.

As can be seen in Figure 2(a), in a single minute of testing
all concolic search strategies were able to cover 80% of the
branches in replace. In fact, in an additional couple of
minutes of testing the best concolic runs achieve 85% or even
90% branch coverage.

B. GNU Grep 2.2

GNU grep is a 15K-line open source C program for text
search with regular expressions. We instrument grep 2.2 to
match a length-20 symbolic pattern (length-5 for DFS) against
40 symbolic characters, using all the default matching options.

Figure 2(b) shows that in only a couple of minutes the
most effective strategies are able to cover nearly 60% of the
estimated reachable branches. In particular, note that the CFG-
directed search and the random branch search outperform
both random testing and a depth-first concolic search by a
significant margin.

C. Vim 5.7.

Vim 5.7 is a 150K-line open source text editor. We replace
the safe_vgetc and vgetc functions with one which
returns up to 40 characters of symbolic input. These functions
provide the inputs to most, but not all modes in Vim. We
were thus unable to test Ex mode and several other parts of
the editor.

Figure 2(c) shows that in 2-3 hours of testing the most
effective search strategies covered nearly a third of the es-
timated reachable branches. In particular, the CFG-directed
search and random branch search achieve more than twice the
coverage of the other methods. Further, these two strategies

obtain coverage very rapidly, achieving at iterations 100 and
150, respectively, greater coverage than the other strategies do
in 4000 iterations.

IV. CONCLUSIONS

We believe that a combination of static and dynamic anal-
yses can help automated test generation to achieve significant
branch coverage on large software systems. Our experimental
results suggest that sophisticated search strategies, particularly
those driven by static information such as a programs control
flow graph, can enable concolic execution to achieve greater
coverage on larger, real-world programs.

ACKNOWLEDGMENTS

We would like to thank Caltech UGCS, of the Student
Computing Consortium, for providing the computing resources
used in this work. This work is supported in part by the NSF
Grants CNS-0720906, CCF-0747390, and a gift from Toyota.

REFERENCES

[1] D. Bird and C. Munoz, “Automatic Generation of Random Self-
Checking Test Cases,” IBM Systems Journal, vol. 22, no. 3, pp. 229–245,
1983.

[2] J. E. Forrester and B. P. Miller, “An Empirical Study of the Robustness
of Windows NT Applications Using Random Testing,” in Proceedings
of the 4th USENIX Windows System Symposium, 2000.

[3] C. Csallner and Y. Smaragdakis, “JCrasher: an automatic robustness
tester for Java,” Software: Practice and Experience, vol. 34, pp. 1025–
1050, 2004.

[4] C. Pacheco and M. D. Ernst, “Eclat: Automatic generation and classi-
fication of test inputs,” in 19th European Conference Object-Oriented
Programming, 2005.

[5] J. C. King, “Symbolic Execution and Program Testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[6] L. Clarke, “A system to generate test data and symbolically execute
programs,” IEEE Trans. Software Eng., vol. 2, pp. 215–222, 1976.

[7] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in Proc. of the ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation (PLDI), 2005.

[8] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in 5th joint meeting of the European Software Engineering
Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE’05). ACM, 2005.

[9] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler, “EXE:
Automatically generating inputs of death,” in ACM Conference on
Computer and Communications Security (CCS 2006), 2006.

[10] G. Necula, S. McPeak, S. Rahul, and W. Weimer, “CIL: Intermediate
language and tools for analysis and transformation of C programs,” in
Proceedings of Conference on Compiler Construction, 2002.

[11] B. Dutertre and L. M. de Moura, “A fast linear-arithmetic solver for
DPLL(T),” in Computer Aided Verification, ser. LNCS, vol. 4144, 2006,
pp. 81–94.

[12] J. Harrold and G. Rothermel, “Siemens programs, HR variants,” http:
//www.cc.gatech.edu/aristotle/Tools/subjects/.

