Jacob Burnim, Koushik Sen \ S

« Goal: Automatically generate effective test cases for « Key Idea: Use static structure of test program to guide search. « Control flow and static call graph (CFCG): main(xy) | 2 « CREST, an open-source test generation tool for C.
large software systems with concolic execution. - Dynamic search with a static heuristic. - Control flow graph for each procedure. ! 5 C++ platform for experimenting with concolic
« The Challenge: Path Space Explosion. - Search guided by knowledge of unexplored parts of path space. - Call edge from each call site to the rESY T2 search strategies.
. Even medium-sized programs have 10'%+ paths. o | called function. | , . U.ses CIL to mstru.ment programs and extract control flc?w.
. Completely intractable to exhaustively test each path, Heuristic: Explore paths statically “close” to uncovered branches. * No return edges back to call sites. « Library .for symbolic execution along a concrete execution.
« Use distance in the control flow and static call graph (CFCG). 0 1 * Uses Yices SMT solver.
+ Revised Goals: - Negate conditionals with minimal distance to uncovered branches. Static path: a path through the CFCG e 9K) f(y:x) s * Implemented our strategies in CREST.
* Focus on branch coverage. « Can either skip over a function y - \ - Available at: http://crest.googlecode.com
- Attain better branch coverage with fewer tests. « Search Strategy: call or enter the called function and ¢ \\ 1
« Our Approach: Try to explore only the * Local search — operates on one current execution path at a time. never Iea}ve. g(z) | o0 00 f(a) |1
“important” program paths. + Given a current execution path: * Assumptions: '.
" : s - « All functions return.
1. Negate conditional with minimal distance to an uncovered branch. ' @ 1 .
« Propose three search strategies: FIGURE 1 — Ilustration of low 2. Try to force program down all shortest static paths) rl?atf:jsnlntsglppedl fl:né:tlons oo\‘ 00 BENCH MARK G N U grep 2'2
« Control-flow directed search coverage of traditional concolic from negated conditional to an uncovered branch. eed not be explorea. 0 S x) {:/,j?
« Uniformly random path search testing on a huge path space. 3. It all paths are infeasible: 2 0 « Popular regular expression matching tool.
« Random-branch search ‘ ![ncrease our estidmbate ofhdistance from the conditional ’ (?if?tanlce i?fCFCG' captures 00 00 {jj? \G> 00 « 15K lines of C -- 4184 branches,
0 any uncovered branch. Ifficulty of forcing execution an estimated 2854 of which are reachable..
* Keep negating conditionals with minimal distances. down a static path | | L h-D d 40 ch f
4. Otherwise, we have an execution through an uncovered branch: . Edges leaving a conditional have I::\GURE 4 - Control flow |S_nd sta2t|c gterl]lldgr?ph for * Input: Length-20 regexp and 40 characters of text.
)) € example program in rigure <, wi IStances
COMPUTATION TREE OF A PROGRAM * Update coverage and recompute estimated distances. weight one; others weight zero. to the ABORT statement in function f. 1600 .
* Restart the search on the new execution. « During search, negating any -
_ _ _ « Can restart on new, random paths when progress slows. conditional requires one iteration. Call edges are dashed lines; conditional 1400 | B
« The computation tree is the tree of all feasible edges with weight one are in blue.
program executions. 1200 1)
—

random testing

branches covered
—
()
)
o

« Each node corresponds to an execution of a
conditional statement. / \
FIGURE 3 — Computation tree of the

800 | BoundedDFS (depth 12) ——
« Each edge a sequence of non-conditional UniformRandomSearch ——

J % . example program from Figure 2. EXAM PLE OF CONTROL'FLOW DIRECTED SEARCH 600 RandomBranchSearch ——
statements executed between two successive CfgDirectedSearch
conditional statements. | | 400

. . The first branch is negated | 0 500 1000 1500 2000 2500 3000 3500 4000
. The_ conditions along.a path characterllze the Goal: Reach the ABORT because it has smallest static The second branch is e
equivalence class of inputs that exercise the path. statement in function f. distance to the target. negated bc?'C?use It’[h?S thet Target i
minimum n r . .
nimum gIstance 16 1arge reached. « Control-flow and random-branch strategies cover

The search skips all paths
through function f because
the second branch has no
static paths to the target.

We initially run the
program on zero
inputs.

1/3 of branches (1/2 of reachable) in a few minutes.

« Better coverage than traditional depth-first search or
random testing in the same number of runs of grep.

Again all paths through
function f are ignored.

program, which serves f(int a) {

r running exampl it (a ==17)
as our ru g example. ABORT;

F
/FIGURE 2 - A simple C \ = T
F T

T
F T
(v>3)

F T
F T

else Run on
main(int x, int y) { g(a); X=2, y=
int = 3y s 2) - N\ BENCHMARK: Vim 5.7
£(y): g(int z) {
else if (z > 3) # * Popular open-source text editor.
g(x); assert(z > 0);
« 150K i fC--39,166 b hes, i d
K} } / \ / 23,400no?‘8wc;1ich are reac:harta;llgC 5, an estimate
 Input: 20 symbolic characters.
CONCOLIC TEST GENERATION UNIFORMLY-RANDOM PATH SEARCH RANDOM-BRANCH SEARCH 8000 (

BoundedDFS (depth 12) —
UniformRandomSearch ———

« Concrete + symbolic execution: technique to generate an input

exercising each possible path through the program under test. * Key Idea: Test program on

« Motivation: Generating paths uniformly

uniformly random paths rather at random is too expensive — L/2 expected Rang?rgsrar:cggearcn —
- Basic Procedure: than on random inputs. iterations per path with L feasible branches. gbirectedSearc .
] . I_J—_—;_’_Ji
« Given a concrete execution path, do symbolic execution along path. * Much more likely to cover some

paths than with random inputs —
e.g. only 1/2%4 inputs reach ABORT.

« Simplify using concrete values.

* Yields symbolic path constraint -- a formula
characterizing which inputs exercise the path.

- Pick a conditional branch along path to negate. * Run program, then negate each
x=3y+2 A y=T A y=<3

 Instead, each iteration randomly pick
and negate one feasible branch along
the current execution path.

« Samples some random walk

Xx=3y+2 AN y=T A y>3 0 500 1000 1500 2000 2500 3000 3500 4000

iterations

« Solve for inputs so branch is not taken. branch with probability 1/2. throuah the path space Top 1 iratedi v 1/5 of b n
* Running on new inputs yields new concrete execution. « Generates each path with L feasible J P P ' Op WO Stralegies cover ”ea?r y ot branc eS.
branches with probability 2 5 178 (1/3 of reachable branches) in 2-3 hours of testing.
* Exhaustively explores every path in computation tree — . Takes L/2 expected iterations. FIGURE 5 — Computation tree with » Found to be more effective in practice FIGURE 6 — Computation tree with * Gap between control-flow and random-branch
traditionally with a depth-first search. probabilities for each path under then generating uniformly random paths. probabilities for each branch to be strategies over others seems to grow with

« Given a path, always negate the deepest conditional not yet negated. uniformly-random path search. negated given a current execution. benchmark size.

