
IMPLEMENTATION

•  CREST, an open-source test generation tool for C.

•  C++ platform for experimenting with concolic 

search strategies.

•  Uses CIL to instrument programs and extract control flow.

•  Library for symbolic execution along a concrete execution.

•  Uses Yices SMT solver.

•  Implemented our strategies in CREST.

•  Available at: http://crest.googlecode.com

BENCHMARK: GNU grep 2.2

•  Popular regular expression matching tool.

•  15K lines of C -- 4184 branches, 

an estimated 2854 of which are reachable..

•  Input: Length-20 regexp and 40 characters of text.

•  Control-flow and random-branch strategies cover 
1/3 of branches (1/2 of reachable) in a few minutes.

•  Better coverage than traditional depth-first search or
random testing in the same number of runs of grep.

BENCHMARK: Vim 5.7

•  Popular open-source text editor.

•  150K lines of C -- 39,166 branches, an estimated

23,400 of which are reachable

•  Input: 20 symbolic characters.

•  Top two strategies cover nearly 1/5 of branches 
(1/3 of reachable branches) in 2-3 hours of testing.

•  Gap between control-flow and random-branch
strategies over others seems to grow with
benchmark size.

Heuristics for Scalable Dynamic Test Generation
Jacob Burnim, Koushik Sen

COMPUTATION TREE OF A PROGRAM

•  The computation tree is the tree of all feasible 
program executions.

•  Each node corresponds to an execution of a 
conditional statement.

•  Each edge a sequence of non-conditional 
statements executed between two successive 
conditional statements.

•  The conditions along a path characterize the 
equivalence class of inputs that exercise the path. 

CONTROL FLOW AND STATIC CALL GRAPH

•  Control flow and static call graph (CFCG):

•  Control flow graph for each procedure.

•  Call edge from each call site to the 

called function.

•  No return edges back to call sites.

•  Static path: a path through the CFCG

•  Can either skip over a function 

call or enter the called function and 
never leave.

•  Assumptions:

•  All functions return.

•  Paths in skipped functions 

need not be explored.

•  Distance in CFCG captures 
difficulty of forcing execution 
down a static path

•  Edges leaving a conditional have 

weight one; others weight zero.

•  During search, negating any 

conditional requires one iteration.

CONCOLIC TEST GENERATION

•  Concrete + symbolic execution: technique to generate an input
exercising each possible path through the program under test.

•  Basic Procedure:

•  Given a concrete execution path, do symbolic execution along path.

•  Simplify using concrete values.

•  Yields symbolic path constraint -- a formula  

characterizing which inputs exercise the path.

•  Pick a conditional branch along path to negate.

•  Solve for inputs so branch is not taken.

•  Running on new inputs yields new concrete execution.

•  Exhaustively explores every path in computation tree – 
traditionally with a depth-first search.

•  Given a path, always negate the deepest conditional not yet negated.

UNIFORMLY-RANDOM PATH SEARCH

•  Key Idea: Test program on 
uniformly random paths rather 
than on random inputs.

•  Much more likely to cover some 

paths than with random inputs – 
e.g. only 1/264 inputs reach ABORT.

•  Run program, then negate each 
branch with probability 1/2.

•  Generates each path with L feasible 

branches with probability 2-L

•  Takes L/2 expected iterations.

x = 3*y + 2

y = 7

y > 3

y > 0

x > 0

x > 3

F
 T

F
 T
 T
F

F
 T
 T
F

T
F

1/4
1/4

1/4
 1/8

1/8
0

0

FIGURE 5 – Computation tree with
 probabilities for each path under
 uniformly-random path search.

RANDOM-BRANCH SEARCH

•  Motivation: Generating paths uniformly 
at random is too expensive – L/2 expected 
iterations per path with L feasible branches.

•  Instead, each iteration randomly pick 
and negate one feasible branch along 
the current execution path.

•  Samples some random walk 

through the path space.

•  Found to be more effective in practice 
then generating uniformly random paths.

x = 3*y + 2

y = 7

y > 3

y > 0

x > 0

x > 3

F
 T

F
 T
 T
F

F
 T
 T
F

T
F

1/3

1/3

1/3

FIGURE 6 – Computation tree with
 probabilities for each branch to be
 negated given a current execution.

CONTROL-FLOW DIRECTED SEARCH

•  Key Idea: Use static structure of test program to guide search.

•  Dynamic search with a static heuristic.

•  Search guided by knowledge of unexplored parts of path space.

•  Heuristic: Explore paths statically “close” to uncovered branches.

•  Use distance in the control flow and static call graph (CFCG).

•  Negate conditionals with minimal distance to uncovered branches.

•  Search Strategy:

•  Local search – operates on one current execution path at a time.

•  Given a current execution path:

1.  Negate conditional with minimal distance to an uncovered branch.

2.  Try to force program down all shortest static paths 

from negated conditional to an uncovered branch.

3.  If all paths are infeasible:

•  Increase our estimate of distance from the conditional 
to any uncovered branch.

•  Keep negating conditionals with minimal distances.

4.  Otherwise, we have an execution through an uncovered branch:

•  Update coverage and recompute estimated distances.

•  Restart the search on the new execution.

•  Can restart on new, random paths when progress slows.

EXAMPLE OF CONTROL-FLOW DIRECTED SEARCH

Run on
 x=0, y=0

Run on
 x=2, y=0

Run on
 x=23, y=7

x = 3*y + 2

y = 7

y > 3

y > 0

x > 0

x > 3

F
 T

F
 T
 T
F

F
 T
 T
F

T
F

2

∞

x = 3*y + 2

y = 7

y > 3

y > 0

x > 0

x > 3

F
 T

F
 T
 T
F

F
 T
 T
F

T
F

∞

2

1

x = 3*y + 2

y = 7

y > 3

y > 0

x > 0

x > 3

F
 T

F
 T
 T
F

F
 T
 T
F

T
F

2

1

0

Goal: Reach the ABORT
 statement in function f.

We initially run the
 program on zero 
 inputs.

The first branch is negated
 because it has smallest static
 distance to the target.

The search skips all paths
 through function f because
 the second branch has no 
 static paths to the target.

The second branch is
 negated because it has the
 minimum distance to target.

Again all paths through
 function f are ignored.

Target is 
reached.

FIGURE 4 – Control flow and static call graph for
 the example program in Figure 2, with distances
 to the ABORT statement in function f. 

 Call edges are dashed lines; conditional 
 edges with weight one are in blue.

main(x,y)

h := 3*y + 2

x = h

g(x) f(y,x)

g(z)

z > 3

z > 0

g

f(a)

a = 3

g(x)

f

main

0

1

2

∞

2

2

1

1

∞

∞

∞

∞
∞
 ∞

∞

∞

x = 3*y + 2

y = 7

y > 3

y > 0

x > 0

x > 3

F
 T

F
 T
 T
F

F
 T
 T
F

T
F

FIGURE 3 – Computation tree of the

 example program from Figure 2.

f(int a) {

if (a == 7)

ABORT;

else

g(a);

}

g(int z) {

if (z > 3)

assert(z > 0);

}

main(int x, int y) {

int h = 3*y + 2;

if (x == h)

f(y);

else

g(x);

}

FIGURE 2 – A simple C
 program, which serves 
as our running example.

OVERVIEW

•  Goal: Automatically generate effective test cases for  
large software systems with concolic execution.

•  The Challenge: Path Space Explosion.

•  Even medium-sized programs have 10100+ paths.

•  Completely intractable to exhaustively test each path.

•  Revised Goals:

•  Focus on branch coverage.

•  Attain better branch coverage with fewer tests.

•  Our Approach: Try to explore only the 
 “important” program paths.

•  Propose three search strategies:

•  Control-flow directed search

•  Uniformly random path search

•  Random-branch search 

€

x = 3y + 2 ∧ y ≠ 7 ∧ y > 3

FIGURE 1 – Illustration of low 
coverage of traditional concolic 
testing on a huge path space.

€

x = 3y + 2 ∧ y ≠ 7 ∧ y ≤ 3

