
Separating Functional

and Parallel Correctness

using Nondeterministic

Sequential Specifications

Jacob Burnim, George Necula, Koushik Sen

University of California, Berkeley

HotPar '10, Berkeley, CA June 14, 2010 1

Parallel Programming is Hard

!!Key Culprit: Nondeterministic

interleaving of parallel threads.

!! Painful to reason simultaneously about

parallelism and functional correctness.

!!Goal: Decompose efforts in addressing

parallelism and functional correctness.

!! Allow programmers to reason about

functional correctness sequentially.

!! Independently show correctness of parallelism.

2

Our Approach

!!Goal: Decompose efforts in addressing

parallelism and functional correctness.

Parallel

program

Functional

specification
!

3

Our Approach

!!Goal: Decompose efforts in addressing

parallelism and functional correctness.

Parallel

program

Functional

specification

Program /

specification

4

Our Approach

!!Goal: Decompose efforts in addressing

parallelism and functional correctness.

Parallel

program

Functional

specification

Program /

specification

5

Parallelism Correctness.

Prove independently of

complex & sequential

function correctness.

Our Approach

!!Goal: Decompose efforts in addressing

parallelism and functional correctness.

Parallel

program

Functional

specification

Sequential

program /

specification

6

Want to be able to

reason about functional

correctness without

parallel interleavings.

Parallelism Correctness.

Prove independently of

complex & sequential

function correctness.

Our Approach

!!Use sequential but nondeterministic

specification for a program’s parallelism.

!! User annotates intended nondeterminism.

Parallel

program

Functional

specification

Nondeterministic

sequential

program/spec

7

Our Approach

!!Use sequential but nondeterministic

specification for a program’s parallelism.

!! User annotates intended nondeterminism.

Parallel

program

Functional

specification

Nondeterministic

sequential

program/spec

Parallelism correct if

adds no unintended

nondeterminism.

Can address functional

correctness without

parallel interleavings.

8

Outline

!!Overview

!!Motivating Example

!!Nondeterministic Sequential (NDSEQ)

Specifications for Parallel Correctness

!!Proving Parallel Correctness

!!Future Work

!!Conclusions

9

Motivating Example

!!Goal: Find minimum-cost solution.

!! Simplified branch-and-bound benchmark.

for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w

10

Motivating Example

!!Goal: Find minimum-cost solution.

!! Simplified branch-and-bound benchmark.

for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w

Input: List of

possible solutions.

Output: Solution from

input queue with

minimum cost.

11

Motivating Example

!!Goal: Find minimum-cost solution.

!! Simplified branch-and-bound benchmark.

for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w
Computes cost of

solution w. Expensive.

12

Motivating Example

!!Goal: Find minimum-cost solution.

!! Simplified branch-and-bound benchmark.

for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w
Computes cost of

solution w. Expensive.

Computes cheap lower

bound on cost of w.

13

Motivating Example

!!Goal: Find minimum-cost solution.

!! Simplified branch-and-bound benchmark.

for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w
Computes cost of

solution w. Expensive.

Computes cheap lower

bound on cost of w.

Prune when w cannot

have minimum-cost.

14

Motivating Example

for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w

bound: 1
cost: 2

(a) bound: 0
cost: 3

(b) bound: 5
cost: 9

(c) queue:

best: !"

best_soln: !"

15

Motivating Example

for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w

bound: 1
cost: 2

(a) bound: 0
cost: 3

(b) bound: 5
cost: 9

(c)

prune?(a)

queue:

best: !"

best_soln: !"

16

Motivating Example

for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w

bound: 1
cost: 2

(a) bound: 0
cost: 3

(b) bound: 5
cost: 9

(c)

prune?(a)

update(a)

queue:

best: 2

best_soln: !"

17

Motivating Example

for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w

bound: 1
cost: 2

(a) bound: 0
cost: 3

(b) bound: 5
cost: 9

(c)

prune?(a)

update(a)

prune?(b)

queue:

best: 2

best_soln: !"

18

Motivating Example

for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w

bound: 1
cost: 2

(a) bound: 0
cost: 3

(b) bound: 5
cost: 9

(c)

prune?(a)

update(a)

prune?(b)

update(b)

queue:

best_soln: !"
best: 2

19

Motivating Example

for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w

bound: 1
cost: 2

(a) bound: 0
cost: 3

(b) bound: 5
cost: 9

(c)

prune?(a)

update(a)

prune?(b)

update(b)

prune?(c)

queue:

best_soln: !"
best: 2

20

Motivating Example

for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w

bound: 1
cost: 2

(a) bound: 0
cost: 3

(b) bound: 5
cost: 9

(c)

prune?(a)

update(a)

prune?(b)

update(b)

prune?(c)

queue:

best_soln: !!
best: 2

21

Motivating Example

!!Goal: Find minimum-cost solution.

!! Simplified branch-and-bound benchmark.

for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w

22

Motivating Example

!!Goal: Find minimum-cost solution.

!! Simplified branch-and-bound benchmark.

for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w

How do we

parallelize this code?

23

Parallelizing our Example
!!Goal: Find min-cost solution in parallel.

!! Simplified branch-and-bound benchmark.

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

24

Parallelizing our Example
!!Goal: Find min-cost solution in parallel.

!! Simplified branch-and-bound benchmark.

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

Updates to best

are atomic.

Loop iterations can be

run in parallel.

25

Prove Parallelism Correct?
!!Claim: Parallelization is correct.

!! If there are any bugs, they are sequential.

!! Want to prove parallelization correct.

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

26

Prove Parallelism Correct?
!!Claim: Parallelization is correct.

!! If there are any bugs, they are sequential.

!! Want to prove parallelization correct.

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

Idea: Specify that parallel version

gives same result as sequential.

27

Parallel-Sequential Equivalence?

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

bound: 1
cost: 2

queue: (a) bound: 0
cost: 2

(b) bound: 5
cost: 9

(c)

best: !"

best_soln: !"

28

Parallel-Sequential Equivalence?

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

bound: 1
cost: 2

queue: (a) bound: 0
cost: 2

(b) bound: 5
cost: 9

(c)

best: 2

best_soln: !"

prune?(a)

update(a)

29

Parallel-Sequential Equivalence?

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

bound: 1
cost: 2

queue: (a) bound: 0
cost: 2

(b) bound: 5
cost: 9

(c)

best: 2

best_soln: !"

prune?(a)

update(a)

update(b)

prune?(b)

30

Parallel-Sequential Equivalence?

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

bound: 1
cost: 2

queue: (a) bound: 0
cost: 2

(b) bound: 5
cost: 9

(c)

best: 2

best_soln: !"

prune?(a)

update(a)

update(b)

prune?(b)

31

prune?(c)

Parallel-Sequential Equivalence?

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

bound: 1
cost: 2

queue: (a) bound: 0
cost: 2

(b) bound: 5
cost: 9

(c)

best: 2

best_soln: !"

prune?(a)

prune?(c)

update(a)

update(b)

prune?(b)

Sequential program

always finds

best_soln = (a).

32

Parallel-Sequential Equivalence?

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

bound: 1
cost: 2

queue: (a) bound: 0
cost: 2

(b) bound: 5
cost: 9

(c)

best: !"

best_soln: !"

33

Parallel-Sequential Equivalence?

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

bound: 1
cost: 2

queue: (a) bound: 0
cost: 2

(b) bound: 5
cost: 9

(c)

best: !"

best_soln: !"

prune?(a)

34

Parallel-Sequential Equivalence?

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

bound: 1
cost: 2

queue: (a) bound: 0
cost: 2

(b) bound: 5
cost: 9

(c)

best: 2

best_soln: !"

prune?(b)

update(b)

prune?(a)

35

Parallel-Sequential Equivalence?

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

bound: 1
cost: 2

queue: (a) bound: 0
cost: 2

(b) bound: 5
cost: 9

(c)

best: 2

best_soln: !"

prune?(b)

update(b)

prune?(a)

prune?(c)

36

Parallel-Sequential Equivalence?

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

bound: 1
cost: 2

queue: (a) bound: 0
cost: 2

(b) bound: 5
cost: 9

(c)

best: 2

best_soln: !"

prune?(b)

update(a)

update(b)

prune?(a)

prune?(c)

37

Parallel-Sequential Equivalence?

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

bound: 1
cost: 2

queue: (a) bound: 0
cost: 2

(b) bound: 5
cost: 9

(c)

best: 2

best_soln: !"

Parallel version

can also find

best_soln = (b).

prune?(b)

update(a)

update(b)

prune?(a)

prune?(c)

38

Parallel-Sequential Equivalence?

!!Parallel and sequential not equivalent.

!! Claim: But parallelism is correct.

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

39

Parallel-Sequential Equivalence?

!!Parallel and sequential not equivalent.

!! Claim: But parallelism is correct.

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

Some nondeterminism is okay.

Specification for the parallelism

must indicate intended or

algorithmic nondeterminism.

40

NDSEQ Specification
!!Use nondeterministic sequential (NDSEQ)

version of program as spec for parallelism.

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

nondet-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w

41

NDSEQ Specification
!!Use nondeterministic sequential (NDSEQ)

version of program as spec for parallelism.

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

nondet-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w

Allow sequential code to

perform iterations in a

nondeterministic order.

42

NDSEQ Specification
!!Specifies:

!! For every parallel execution, there must exist

an NDSEQ execution with the same result.

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

nondet-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w

43

Parallel-NDSEQ Equivalence?
bound: 1
cost: 2

queue: (a) bound: 0
cost: 2

(b) bound: 5
cost: 9

(c)

best: 2

best_soln: !"

prune?(b)

update(a)

update(b)

prune?(a)

prune?(c)

Parallel:

!!No equivalent

sequential execution.

!!An equivalent

NDSEQ execution?

44

Parallel-NDSEQ Equivalence?
bound: 1
cost: 2

queue: (a) bound: 0
cost: 2

(b) bound: 5
cost: 9

(c)

best: 2

best_soln: !"

prune?(b)

update(a)

update(b)

prune?(a)

prune?(c)

Parallel: NDSEQ:

prune?(b)

prune?(c)

update(b)

update(a)

prune?(a)
Equivalent.

45

NDSEQ Specification

Does this NDSEQ specification really

capture correctness of the parallelism?

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

nondet-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w

46

Recall: Our Approach

!!Use sequential but nondeterministic

specification for a program’s parallelism.

!! User annotates intended nondeterminism.

Parallel

program

Functional

specification

Nondeterministic

but sequential

program/spec

Parallelism correct if

adds no unintended

nondeterminism.

47

Can address functional

correctness without

parallel interleavings.

Recall: Our Approach

!!Use sequential but nondeterministic

specification for a program’s parallelism.

!! User annotates intended nondeterminism.

Parallel

program

Functional

specification

Nondeterministic

but sequential

program/spec

48

Prove independently

of complex functional

correctness.

Can address functional

correctness without

parallel interleavings.

Parallel-NDSEQ Equivalence?

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

bound: 2
cost: 2

queue: (a) bound: 2
cost: 2

(b) bound: 5
cost: 9

(c)

best_soln: !"
best: !"

49

Parallel-NDSEQ Equivalence?
bound: 2
cost: 2

queue: (a) bound: 2
cost: 2

(b) bound: 5
cost: 9

(c)

best_soln: !"

prune?(a)

prune?(b)

best: !"

50

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

Parallel-NDSEQ Equivalence?
bound: 2
cost: 2

queue: (a) bound: 2
cost: 2

(b) bound: 5
cost: 9

(c)

best: 2

best_soln: !"

prune?(a)

prune?(b)

update(a)

51

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

Parallel-NDSEQ Equivalence?

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

bound: 2
cost: 2

queue: (a) bound: 2
cost: 2

(b) bound: 5
cost: 9

(c)

best_soln: !"

prune?(a)

prune?(b)

update(a)

update(b)

52

best: 2

Parallel-NDSEQ Equivalence?
bound: 2
cost: 2

queue: (a) bound: 2
cost: 2

(b) bound: 5
cost: 9

(c)

best_soln: !"

prune?(c)

prune?(a)

prune?(b)

update(a)

update(b)

53

best: 2

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

Parallel-NDSEQ Equivalence?
bound: 2
cost: 2

queue: (a) bound: 2
cost: 2

(b) bound: 5
cost: 9

(c)

best: 2

best_soln: !"

prune?(c)

prune?(a)

prune?(b)

update(a)

update(b)

54

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

Parallel code can

avoid pruning by

interleaving iterations.

NDSEQ version must

prune either (a) or (b).

Parallel-NDSEQ Equivalence?
bound: 2
cost: 2

queue: (a) bound: 2
cost: 2

(b) bound: 5
cost: 9

(c)

best: 2

best_soln: !"

prune?(c)

prune?(a)

prune?(b)

update(a)

update(b)

55

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

Parallel code can

avoid pruning by

interleaving iterations.

NDSEQ should have

freedom to not prune.

NDSEQ Specification

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

nondet-for (w in queue):

 if (lower_bnd(w) >= best):

 if (*): continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w

Allows NDSEQ version to

nondeterministically not prune

when pruning is possible.

56

NDSEQ Specification

!!Claim: NDSEQ code a good specification

for the correctness of the parallelism.

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

nondet-for (w in queue):

 if (lower_bnd(w) >= best):

 if (*): continue

 cost = compute_cost(w)

 if cost < best:

 best = cost

 best_soln = w

57

Recall: Our Approach

!!Use sequential but nondeterministic

specification for a program’s parallelism.

!! User annotates intended nondeterminism.

Parallel

program

Functional

specification

Nondeterministic

but sequential

program/spec

Prove parallel correctness

independent of complex

functional correctness.

Can address functional

correctness without

parallel interleavings.

58

NDSEQ Functional Correctness

59

!!Claim: much easier

!! Consider recursive Boolean programs

!! Consider Model Checking: Reachability

!! Parallel Programs

!! pushdown system with multiple stacks

!! Undecidable [Ramalingam '00]

!! Nondeterministic sequential programs

!! pushdown systems

!! Decidable [Finkel et al. '97, Bouajjani et al. '97, and others]

Outline

!!Overview

!!Motivating Example

!!Nondeterministic Sequential (NDSEQ)

Specifications for Parallel Correctness

!!Proving Parallel Correctness

!!Future Work

!!Conclusions

60

NDSEQ Specification
!!Specifies:

!! For every parallel execution, there exists an

NDSEQ execution with the same result.

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 if (*): continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

nondet-for (w in queue):

 if (lower_bnd(w) >= best):

 if (*): continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

61

Proving NDSEQ Equivalence
!! Prove: For every parallel execution, there is

an NDSEQ one yielding the same result.

prune?(c)

prune?(a)

prune?(b)

update(a)

update(b)

Parallel:

best_soln: (b)

62

Proving NDSEQ Equivalence
!! Prove: For every parallel execution, there is

an NDSEQ one yielding the same result.

prune?(c)

prune?(a)

prune?(b)

update(a)

update(b)

Parallel: NDSEQ:

prune?(c)

prune?(a)

prune?(b)

update(a)

update(b)

best_soln: (b) best_soln: (b)

63

Proving NDSEQ Equivalence
!! Prove: For every parallel execution, there is

an NDSEQ one yielding the same result.

prune?(c)

prune?(a)

prune?(b)

update(a)

update(b)

Parallel: NDSEQ:

prune?(c)

prune?(a)

prune?(b)

update(a)

update(b)

best_soln: (b) best_soln: (b)

64

Proving NDSEQ Equivalence
!! Prove: For every parallel execution, there is

an NDSEQ one yielding the same result.

prune?(c)

prune?(a)

prune?(b)

update(a)

update(b)

Parallel: NDSEQ:

prune?(c)

prune?(a)

prune?(b)

update(a)

update(b)

best_soln: (b) best_soln: (b)

Can we prove that such a

rearrangement is always possible?

65

Proving NDSEQ Equivalence
!! Is it always possible to move a prune?

check later in a parallel execution

without changing the result?

prune?(a)

prune?(b)

update(b)
prune?(a)

prune?(b)

update(b)

update(a) update(a)

…

…

66

Proving NDSEQ Equivalence
!! Is it always possible to move a prune?

check later in a parallel execution

without changing the result?

!! Yes – if the check does not prune.

prune?(a)

prune?(b)

update(b)
prune?(a)

prune?(b)

update(b)

update(a) update(a)

…

…

67

Proving NDSEQ Equivalence

!! (1) Can prune?(x) move past prune?(y).

if (lower_bnd(x) >= best):

 if (*): continue

if (lower_bnd(y) >= best):

 if (*): continue

state: "1

state: "2
68

Proving NDSEQ Equivalence

!! (1) Can prune?(x) move past prune?(y).

if (lower_bnd(x) >= best):

 if (*): continue

if (lower_bnd(y) >= best):

 if (*): continue

state: "1

state: "2

if (lower_bnd(x) >= best):

 if (*): continue

if (lower_bnd(y) >= best):

 if (*): continue

state: "1

state: "2

"

69

Proving NDSEQ Equivalence

!! (2) Can prune?(x) move past update?(y).

if (lower_bnd(x) >= best):

 if (*): continue

 best = *

 best_soln = *

state: "1

state: "2
70

Proving NDSEQ Equivalence

!! (2) Can prune?(x) move past update?(y).

if (lower_bnd(x) >= best):

 if (*): continue

 best = *

 best_soln = *

state: "1

state: "2

if (lower_bnd(x) >= best):

 if (*): continue

 best = *

 best_soln = *

state: "1

state: "2

"

71

Proving NDSEQ Equivalence

!!This is proof by reduction [Lipton ’75].

!! [Elmas, et al., POPL 09] has proved

atomicity by reduction with SMT solvers.

parallel-for (w in queue):

 if (lower_bnd(w) >= best):

 if (*): continue

 cost = compute_cost(w)

 atomic:

 if cost < best:

 best = cost

 best_soln = w

Right-
mover

Atomic

72

Outline

!!Overview

!!Motivating Example

!!Nondeterministic Sequential (NDSEQ)

Specifications for Parallel Correctness

!!Proving Parallel Correctness

!!Future Work + Conclusions

73

Future Work

!!Prove parallel-NDSEQ equivalence for

real benchmarks.

!! Automated proofs using SMT solving.

!!Combine with tools for verifying sequential

programs with nondeterminism.

!! Model checking techniques (e.g., CEGAR)

!!Also interested in dynamically checking

NDSEQ specifications.

74

NDSEQ and Debugging

75

!!Given parallel execution exhibiting error:

!! Can we produce an NDSEQ trace exhibiting

the same wrong behavior?

!! If so, bug is sequential and programmer can

debug on a sequential (but NDSEQ) trace.

!! Can we efficiently produce NDSEQ trace

given static proof of parallel correctness?

!!Dynamically checking NDSEQ specs?

!! Ideally, efficiently: (1) finds equivalent

NDSEQ trace, or (2) localizes parallel bug.

Questions?

Email jburnim@cs.berkeley.edu

76

