OVERVIEW

Verifying parallel programs is very challenging.

0 Painful to reason simultaneously about correctness
of parallelism and about functional correctness.

0 Functional correctness often largely sequential.

Goal: Decompose effort of verifying parallelism
and verifying functional correctness.

0 Prove parallel correctness simply — not entangled
iIn complex sequential functional correctness.

0 Verify functional correctness in a sequential way.

Question: What is parallel correctness?

SPECIFYING DETERMINISM

Previous work: Deterministic specifications.
[Burnim and Sen, FSE 2009]

0 ldea: Parallel correctness means every thread
schedule gives semantically equivalent results.

0 Internal nondeterminism, but deterministic output.

O Assert that parallel code yields semantically
equivalent outputs for equivalent inputs.

//;eterministic assume (data data’) { ﬁ\\
// Parallel branch-and-bound
Tree t = min phylo tree(N, data);

} assert (t.cost t’.cost);

Figure 1. Deterministic spec for parallel branch-and-
bound search to find minimum-cost phyogenetic trees.

\\branch-and-bound searcy

Qifferent runs may return different optimal trees. j

Lightweight spec of parallel correctness.
0 Independent of complex functional correctness.
0 Great for testing (with, e.g., active testing).

0 Can automatically infer likely specifications
[Burnim and Sen, ICSE 2010].

Not a complete spec of parallel correctness.
0 Specification ignores tree t in Figure 1.

0 For complex programs, determinism proof attempts
get entangled in details of sequential correctness.

HOTPAR 2010 — BERKELEY, CA — JUNE 14, 2010

OUR APPROACH

For a parallel program, use a sequential but
nondeterministic version as a specification.
0 User annotates intended algorithmic nondeterminism

0 We interpret parallel constructs as nondeterministic
and sequential.

Parallelism is correct if it adds no
unintended nondeterminism.

0 l.e., if parallel and nondeterministic sequential
versions of the program are equivalent.

if (lower _bnd(w) >= best):
continue

if (size(w) <T):
(soln, cost) = find_min(w)

continue
if (size(w) <T):

atomic: atomic:
If cost < best: If cost < best:
best = cost best = cost

p

best _soln = soln best _soln = soln
else:

queue.addAll(split(w))

else:
queue.addAll(split(w))

Figure 2. Generic parallel

ﬂoarallel-for (w in queue): \ mndet-for (w in queue):

if (lower _bnd(w) >= best && *):

(soln, cost) = find_min(w)

Figure 3. Nondeterministic but
\sequential branch-and-bound. /

™

PROVING
PARALLEL CORRECTNESS

Goal: Prove each execution of a parallel
program is equivalent to a nondeterministic
sequential (ndseq) execution.

/Parallel execution trace:

Ndseq execution trace:

R Gl e el

Added nondeterminism allows prune? (a) to
be moved past update (b) without changing
the program’s behavior.

\

o '4‘1.1_ l:“f o
A% e
S R
Y (e 3 L
0> \' -
. y ,3%' "\'. -
; A Y
(5% D A
{ 4'\’* i S v “ {7 \
S) 1'\'):‘ 1 & - Pong "} ‘| :|0 ','» Y | \'.. \ A
%\ eSS 5 A\
.;’.' & ”\Zf%“:n"(- ‘ “h?:vff——“‘ﬂ 4 A ,-""f;a | : N \i
. & S0 GEEY. 0 Fios \
\54{;‘\:‘\ < , ‘ ‘»-f._} — 1‘_:‘;_ Y ; r __;\ﬁ‘:
V. isce .V 9 9 ‘
j— .'*;‘,; 4 ’8 6 8) ’\5‘?“: 7 D
“*tesasense® ‘

PROOF BY REDUCTION

Reduction: Method for proving atomicity.
[Lipton, CACM 1974]

0 Program operations classified as right-movers and
left-movers if they commute to the right/left with all
operations that can run in parallel with them.

0 Code block is atomic if a sequence of right-movers,
one non-mover, and a sequence of left-movers.

O Implies all parallel runs equivalent to ones where
atomic code block is run serially.

/parallel-for (.. .):\

op
...1 right- (nondet-for (...): A
OPy.1 movers op;
OpPy < >

OPk+1 OpPy,

left-

} movers k /
T
Idea: Statically prove that operations are right-

and left-movers using SMT solving.

0 Encode: Are all behaviors of op, ; op, also
behaviors of op, ; op; ?

0 Like [EImas, Qadeer, and Tasiran, POPL 2009].

FUTURE WORK

Formal proof rules for parallel and
nondeterministic sequential equivalence.

Automated proofs of parallel correctness.

Combine with verification tools for sequential
programs with nondeterminism.
0 Model checking with predicate abstraction (CEGAR).
0 Can verify functional correctness on sequential code!

Apply above to real parallel benchmarks.

Applications to debugging?

0 Allow programmer to sequentially debug a parallel
execution by mapping a parallel trace to a
nondeterministic sequential one.

