WISE: Automated Test Generation
for Worst-Case Complexity

Jacob Burnim
Sudeep Juvekar
Koushik Sen

" I
Performance-Directed Testing

m Automated tested has focused on
correctness bugs.

m Goal: Apply to software performance.
Find performance bottlenecks.
Security: Algorithmic denial-of-service.

m Today: Computational complexity testing.
How slow is an operation in the worst case?

Does a function meet its algorithmic
complexity spec?

"
Performance-Directed Testing

m Example: Performance bug in Jar
Reported by Sun on May 15, 2009
update method O(N?) instead of O(N)
O(N) look-up on every file, rather than O(1)
wasted 75% of run-time building rt. jar

Goal of WISE
m Worst-case Inputs from Symbolic Execution
[Input]
Size: N

// insertion sort
for(i =0 .. N-1)
for(j =1 .. 1)
if (A[F] < A[j-1])
swap(A[J], A[J-11)
else
break

Goal of WISE
m Worst-case Inputs from Symbolic Execution
[Input } [Output]

Size: N 1. n
// insertion sort
for(i =0 .. N-1) WISE> 2: En

for(j =1 .. 1)
if (A[J] < A[F-1]) 3: HEEN

swap(A[J], A[J-11)

else AN .. 121

break

" S
Worst-Cast Empirical Complexity

(O
o

O__

- ~
B 54321

Executes 29

_ ﬁblocks. y

Basic Blocks

o
o

3 Input Size 12

" S
Worst-Cast Empirical Complexity

(O
o

O__

a h
109]...[2]1

Executes 109

basic blocks.
\
K.

Basic Blocks

o
o

3 Input Size 12

" S
Worst-Cast Empirical Complexity

(O
o

O__

B
15141...12[1

Executes 239
L basic blocks.

Basic Blocks

o
o

3 Input Size 12

15

" S
Worst-Cast Empirical Complexity

300 T
v 4 N
< N°+ N -1
S T basic blocks. o
0 N o
o ,."
1)) e
g /,0
0 o«
H: .o
-c"f
_o-Y

|

0 3 Input Size 12

» S
Overview of WISE

m Uses symbolic test generation to explore
possible program executions.

Widely used in automated software testing.
(DART, CUTE, SAGE, EXE, KLEE, JPF, ...)

m Key Idea:
Learn from executions on small inputs.

In Quicksort, pivot should be smaller than
all elements to which it's compared.

"
Outline
m Motivation + Goal of WISE
m Background: Symbolic Test Generation
m Naive Algorithm for Finding Complexity
m WISE Algorithm
m Evaluation

m Conclusions + Future Work

" A
Symbolic Test Generation
m Goal: A test input for every program path.

f(int x, 1int y)

zZ = 2%X;

1f (z == X) FQ(>y+8)T
v N

if (x>y + 8)

print (“H1i") _
Computation Tree

"
Symbolic Test Generation
m Depth-first search of computation tree.

f(int x, 1int y)

zZ = 2%X;

1f (z == X) FQ(>y+8)T
if (x >y + 8) K/, ‘\\

print (“H1i") _
Computation Tree

" S
Symbolic Test Generation
m Depth-first search of computation tree.

f(int x, 1int y)
{

zZ = 2%X;

1f (z == Xx)

if (x>y + 8)

PEARECHET)) o(path): 2y #x

Input: x=0,y=1

" S
Symbolic Test Generation
m Depth-first search of computation tree.

f(int x, 1int y)
{

zZ = 2%X;

1f (z == Xx)

if (x>y + 8)

prant (FHE) @(path): 2y=x A X <y+8

Input: x=1,y=2

" S
Symbolic Test Generation
m Depth-first search of computation tree.

f(int x, 1int y)
{

zZ = 2%X;

1f (z == Xx)

if (x>y + 8)

prant(THIT) @(path): 2y=x A x> y+8

Input: x=-10, y = -20

" I
Symbolic Test Generation
m Depth-first search of computation tree.

y i

. | (s N\
f(1ir ~
{ How can symbolic test generation

Z be used to find
ik computational complexity?)

if (x>y + 8)
print (“H1i")

<R

P(path): 2y=x A x>y+8

Input: x=-10, y = -20

"
Outline
m Motivation + Goal of WISE
m Background: Symbolic Test Generation
= Naive Algorithm for Finding Complexity
m WISE Algorithm
m Evaluation

m Conclusions + Future Work

" I
Symbolic Execution for Complexity
m Naive Algorithm:

Generate every execution on N inputs.
Return input for longest execution.

" B
Symbolic Execution for Complexity
m Naive Algorithm:

N=2:

" B
Symbolic Execution for Complexity
m Naive Algorithm:

N=2:

Longest Execution (4 basic blocks)

" I
Symbolic Execution for Complexity
m Naive Algorithm:

N=2:

Worst-case Input: [PIER

" B
Symbolic Execution for Complexity
m Naive Algorithm:

N=3:

" B
Symbolic Execution for Complexity
m Naive Algorithm:

N=3:

Longest Execution
(7 basic blocks)

" B
Symbolic Execution for Complexity
m Naive Algorithm:

N=3:

Worst-Case Input:

" I
Symbolic Execution for Complexity
m Naive Algorithm:

N=3: F
a)
Problem Solved?
N

Iy.
Worst-Case Input:

"
Path Space Explosion
m Naive algorithm does not scale.

N=15:

m 1.6x102 paths

m Longest has only
121 basic blocks

"
Path Space Explosion
m Naive algorithm does not scale.

N=15: A
a

Can we examine only the
1.6 longest paths?

_J o] | S /
121 basic blocks / \\

~

"
Outline
m Motivation + Goal of WISE
m Background: Symbolic Test Generation
m Naive Algorithm for Finding Complexity
s WISE Algorithm
m Evaluation

m Conclusions + Future Work

» S
Overview of WISE

m Step 1: From executions on small inputs,
learn oracle for longest paths.

I
Overview of WISE

m Step 1: From executions on small inputs,
learn oracle for longest paths.

.
f F T
N=1 N=2¥ N=3

I
Overview of WISE

m Step 1: From executions on small inputs,
learn oracle for longest paths.

»
Overview of WISE

m Step 1: From executions on small inputs,
learn oracle for longest paths.

m Step 2: For large inputs, only examine
paths generated by oracle.

" BN
Overview of WISE

m Step 1: From executions on small inputs,
learn oracle for longest paths.

m Step 2: For large inputs, only examine
paths generated by oracle.

N=15

I
Overview of WISE

m Step 1: From executions on small inputs,
learn oracle for longest paths.

m Step 2: For large inputs, only examine
paths generated by oracle.

j> N=15

» I
Overview of WISE

m Step 1: From executions on small inputs,
learn oracle for longest paths.

/.‘Niil v

tep 2. For large inputs, only examine
paths generated by oracle.

j> N=15

" B
Oracles for Longest Paths

m Goal: Prune search of computation tree.

" B
Oracles for Longest Paths

m Goal: Prune search of computation tree.

" S
Branch Policy Oracles
m Classify each conditional in P:

Free: Must explore true or false branch.

Biased: When feasible, only explore true
(resp. false) branch.

" A
Branch Policy Oracles
m Each conditional in P classified as:

-

Free:

~

/ Biased:

~

Branch Policy Oracles
m Each conditional in P classified as:

-

Free:

~

/ Biased:

~

" A
Branch Policy Oracles
m Each conditional in P classified as:

/ Free: \ / Biased (true):\

" A
Branch Policy Oracles
m Each conditional in P classified as:

-

Free:

~

/ Biased (true) :\

" B
Example: Searching w/ Branch Policy

m N insertions into empty sorted list:

// list with sentinel INT MAX
insert(list* p, int x) {

while (x > p->data) {

p = p->next;
}
p->next = new list(p->data,
p->next);
p->data = X;

" S
Example: Searching w/ Branch Policy

m N insertions into empty sorted list:

// list with sentinel INT MAX
insert(list* p, int x) {

while (xXx > p->data]
5 =(p—>nzxt') 1 Biased to
) ! true branch.

\

J

p—->next = new list(p->data,
p->next);
p->data = Xx;

" B
Example: Searching w/ Branch Policy

sorted list: F

00 ®

insert(list, x;);
insert(list, x,);
insert(list, x;3);

sorted list:

00 ®

)

X: X4

F

while (x > p->data) {
p = p->next;

}

" I
Example: Searching w/ Branch Policy

sorted list: IXz > X1] F

X1 ——> 00| o

)

X: X,

F

while (x > p->data) {
P = p->next;

}

" B
Example: Searching w/ Branch Policy

Tx2>oo

sorted list: F

X1 ——> 00| o

F

while (x > p->data) {
P p->next;

}

" B
Example: Searching w/ Branch Policy

sorted list:

X1 —> X2 ——> 00

)

X: X3

while (x > p->data) {
P = p->next;

}

" I
Example: Searching w/ Branch Policy

sorted list:

X1 —> X2 ——> 00

while (x > p->data) {
P p->next;

}

" B
Example: Searching w/ Branch Policy

sorted list:

X1 —> X2 ——> 00

pr =
X: X3

while (x > p->data) {

= p->next;
\ P =P E&%Z>CD}:F

" B
Example: Searching w/ Branch Policy

F

" I
Example: Searching w/ Branch Policy
: N =

Search is directed
precisely to longest path.

N /

verview of WISE
tep 1: From executions on small inputs,

learn oracle for longest paths.

m Step 2: For large inputs, only examine
paths generated by oracle.

j> N=15

verview of WISE
tep 1: From executions on small inputs,

learn oracle for longest paths.

pree

What do we want in
! a branch policy oracle?

TS -A

" B
Selecting a Branch Policy

m Find all executions on size-1,..., T inputs.

m Pick branch policy B that:
gives a longest path for each 1,...,T
gives fewest # pathson 1,..., T

" I
Selecting a Branch Policy

m Pick branch policy B that:
gives a longest path for each 1,...,T
gives fewest # pathson 1,..., T

N=1 N=2 N

3

4 A

Policy:

2 |\

" B
Selecting a Branch Policy

m Pick branch policy B that:
gives a longest path for each 1,...,T
gives fewest # pathson 1,..., T

N=1 N=2 N

.

3

4 A

Policy:

" S
Selecting a Branch Policy
m Pick branch policy B that:

,III,

gives fewest # pathson 1,..., T

~ <43

4 A

Policy:

" B
Selecting a Branch Policy

m Pick branch policy B that:
gives a longest path for each 1,...,T
gives fewest # pathson 1,..., T

N=1 N=2 N

.

3

4 A

Policy:

" I
Selecting a Branch Policy

m Pick branch policy B that:
gives a longest path for each 1,...,T

,lll,

N=1

PP

4 A

Policy:

" B
Selecting a Branch Policy

m Pick branch policy B that:
gives a longest path for each 1,...,T
gives fewest # pathson 1,..., T

N=1 N=2 N

.

3

4 A

Policy:

" B
Selecting a Branch Policy

m Pick branch policy B that:
gives a longest path for each 1,...,T
gives fewest # pathson 1,..., T

N=1 N=2 N

/

3

4 A

Policy:

" J

Outline
m Motivation + Goal of WISE
m Background: Symbolic Test Generation
m Naive Algorithm for Finding Complexity
m WISE Algorithm
= Evaluation

m Conclusions + Future Work

"
Evaluating the WISE Algorithm

m Correctness
Does WISE find worst-case inputs?

m Efficiency (Scalability)

For large inputs, how well does WISE
prune the search?

» BN
Correctness of WISE

m Does WISE find worst-case inputs?

m Recall:
Find all executions on size-1,..., T inputs.

Pick branch policy B that:
(1) gives a longest path for each 1,..., T
(2) gives fewest # pathson 1,..., T

m Will B give longest paths for larger inputs?

" B
Correctness of WISE: The Theory

mYes, if T is large enough.

m Proposition: For any program P,
there exists a T~ such that:

Branch policy B works for 1,..,T*
—> B works for all input sizes.

m How to find T7? We don't know.
In benchmarks, 2 < 77" < 9.

"
Evaluating the WISE Algorithm

m Correctness
Does WISE find worst-case inputs?

m Efficiency (Scalability)

For large inputs, how well does WISE
prune the search?

- S
Experiments: Data Structures

Banchiak | oc) | # pats L I

Sorted List
|
Insert O(n) n:
Heap Insert O(log n) ~ (log n)! 1 2
Red-Black
|
Tree Search Olog n) ok . 8
Binary Search o(n) > nl] 3

Tree Insert

- S
Experiments: Data Structures

// binary search tree insert
vold insert(tree** t, int x) {

while (*t != NULL) {
1f (x <= (*t)->data) {
t = &(*t)->left;
} else {
t = &(*t)->right;
}
}

*t = new tree(x, NULL, NULL);

- S
Experiments: Data Structures

// binary search tree insert
vold insert(tree** t, int x) {
while (*t != NULL) {

Bias to

1f (x <= (*t)->data) {
t = &(*t)->left; true branch.

\

} else {
t = &(*t)->right;
}

*t = new tree(x, NULL, NULL);

- S
Experiments: Data Structures

m For sorted list, tree, and heap insert:

At any conditional comparing a hew
element to an existing one, the new
element should be smaller.

m For red-black tree search:

Search value should be smaller than all
tree elements to which it's compared.

" S
Experiments: Algorithms

Paths
om0 _eran Ll T

Insertion Sort O(n?) n!
Quicksort O(n2) n! 1 8
Mergesort O(n log n) n! ~ 2N 7/
Bellman-Ford O(nm) > (2M)n 1 3
Dijsktra’s O(n2) > 4n 1 3

TSP O(n!) huge 1 5

" S
Experiments: Algorithms

quicksort(int A[], int 1, int r) {

// partition
for (1 =1; 1 < r; 1++) {
if (A[i] <= pivot) {
swap(A[1], A[mid++];
}
}

" S
Experiments: Algorithms

quicksort(int A[], int 1, int r) {

// partition
for (1 = 1; i < r; i++) {

if (A[1i] <= pivot) { Bias to
swap(A[i], A[mid++]; | true branch.)

\

}
}

" S
Experiments: Algorithms

m For Bellman-Ford and Dijkstra’s:

In each iteration, every edge should be
relaxed when feasible.

m For Traveling Salesman:

The search should never be pruned by the
heuristic bound.

" S
Experiments: Algorithms

Paths
om0 _eran Ll T

Insertion Sort O(n?) n!
Quicksort O(n2) n! 1 8
Mergesort O(n log n) n! ~ 2N 7/
Bellman-Ford O(nm) > (2M)n 1 3
Dijsktra’s O(n2) > 4n 1 3

TSP O(n!) huge 1 5

= S
Limitation: Mergesort

// merge

{
A[Kk++]
} else {
A[k++]
}
}

// copy rest

while (1<=lenL && j<=1lenR) {
if (left[i] <= right[]j])

left[i1i++];

right[j++];

of left or right

= S
Limitation: Mergesort

// merge

{
Alk++] =
} else {
A[k++]
}

}
// copy rest

while (1<=lenL && j<=1lenR) {
if (left[i] <= right[]j])

ﬁ
left[i++]; |Longest paths

- alternate.

\

J

right[j++];

of left or right

"
Outline
m Motivation + Goal of WISE
m Background: Symbolic Test Generation
m Naive Algorithm for Finding Complexity
m WISE Algorithm
m Evaluation

m Conclusions + Future Work

" I
Related Work

m Worst-case Execution Time (WCET)

For real-time, embedded systems
Large body of work

m Profiling — e.qg. gprof [Graham, et al., 1982]
m Empirical asymptotic complexity
[Goldsmith, Aiken, Wilkerson, FSE 07]

m Static loop bounds
Linear ranking functions [Colon, Sipma, TACAS 01]
[Gulavani, Gulwani, CAV 08]
SPEED [Gulwani, et a., POPL 08]

» I
Conclusions + Future Work

m Automated testing typically for correctness
Have adapted for performance/complexity

m Worst-case Inputs from Symbolic Execution
Generalizes from runs on small inputs
For small functions/components

m Next: Algorithmic denial-of-service
E.g. regular expression matching
E.g. NIDS packet matching

QUESTIONS?

