
Looper: Lightweight Detection of
Infinite Loops at Runtime

Jacob Burnim, Nicholas Jalbert, Christos Stergiou, and Koushik Sen
Electrical Engineering and Computer Sciences Department

University of California, Berkeley
Berkeley, CA, USA

{jburnim,jalbert,chster,ksen}@cs.berkeley.edu

Abstract

When a running program becomes unresponsive, it is often impossible for
a user to determine if the program is performing some useful computation
or if it has entered an infinite loop. We present LOOPER, an automated
technique for dynamically analyzing a running program to prove that it is
non-terminating. LOOPER uses symbolic execution to produce simple non-
termination arguments for infinite loops dependent on both program values
and the shape of heap. The constructed arguments are verified with an off-
the-shelf SMT solver. We have implemented our technique in a prototype tool
for Java applications, and we demonstrate our technique’s effectiveness on
several non-terminating benchmarks, including a reported infinite loop bug in
open-source text editor jEdit. Our tool is able to dynamically detect infinite
loops deep in the execution of large Java programs with no false warnings,
producing symbolic arguments that can aid in debugging non-termination.

1. Introduction

Non-termination bugs are a common reason for unrespon-
siveness in software applications. When a program becomes
unresponsive, there is often no way for the user to tell if the
program is doing useful computation or if it has entered an
infinite loop. The user is forced to terminate her program after
waiting for some time, never knowing if her work in progress
could have been saved if she had waited just a little bit longer.
Further, manual analysis of an unresponsive program can be
a tedious and error-prone process for a software developer,
potentially requiring stepping through thousands of program
statements in a debugger or examining pages of program
traces.

We present a technique for analyzing a running program and
automatically proving that the program will never terminate.
Our on-demand analysis, called LOOPER, combines concolic
execution [1], [2] and basic invariant generation to construct
simple non-termination arguments which are checked with a
standard SMT solver.

Consider the program in Figure 1. It terminates for some
inputs, but will loop forever if, for example, foo returns 6
and bar returns 1. This program poses several challenges for
a static termination or non-termination prover. First, functions
foo and bar may be large and complex or may involve
system calls or other interaction with the external environment.
Thus, static reasoning or exploration of these functions may
be infeasible. Second, the analysis of the loop itself is non-
trivial, as symbolic reasoning about the nonlinear update of x
is difficult and y increases without bound. This difficulty is

compounded if we replace (x * x + 2) % 10 with a call
f(x) to some pure, external function.

Dynamic non-termination analysis, however, started only
once this program has become unresponsive, can overcome
these challenges. Suppose LOOPER has been invoked on an
execution when foo returned 6 and bar returned 1, and the
while-loop has already run for some time.

LOOPER observes one iteration of the loop, say where x
is initially 8 and y is initially 52. Parallel to the concrete
execution, LOOPER symbolically executes one loop iteration.
This symbolic execution treats variables x and y as symbolic
inputs, and infers that: (1) whenever x = 8 and y > 0, the
loop iterates once updating x 7→ 6 and y 7→ y + 1. Note
that LOOPER symbolically abstracts y, but concretizes x =
8 to handle the non-linear arithmetic involving x. LOOPER
then concretely and symbolically executes a second iteration,
inferring that: (2) whenever x = 6 and y > 0, the loop iterates
once updating x 7→ 8 and y 7→ y + 1.

Combining these two abstract iterations, LOOPER can easily
prove that an iteration of type (1) or (2) must always be
followed by another iteration. That is, after an iteration of
either type is executed, x is either 6 or 8 and y > 0. Thus, x
will never be 3, y will always be positive, and the loop will
run forever.

As the above example shows, our approach has several
advantages:

• LOOPER need only prove that one observed concrete
state leads to non-termination. Thus, it can leverage the
evolving concrete state of a running program to soundly
simplify its symbolic execution, producing multiple sim-
ple abstractions for each observed path through a loop.

• These simple abstractions enable LOOPER to reason

main() {
x = foo();
y = bar();
while (x != 3 && y > 0) {

x = (x * x + 2) % 10;
y++;

}
}

Fig. 1: An Example Infinite Loop

about loops that depend on non-linear arithmetic, the
shape of the heap, or side-effect-free external functions
using only basic invariant generation and constraint solv-
ing.

• Because LOOPER is a dynamic, on-demand analysis, it
need incur no cost until invoked by a user because the
target program has become unresponsive. It can be used
to analyze potentially-infinite loops deep in the execution
of a large application.

We have built a prototype implementation of LOOPER for
Java applications. Our prototype successfully detects non-
termination in three real-world benchmarks, including an
infinite loop bug in the jEdit text editor and a non-terminating
Javascript program run in the Rhino interpreter. These loops
execute up to 1600 statements per iteration, depend on the
shape of the heap, and allocate new objects.

While necessarily incomplete, LOOPER can be effectively
applied to automatically analyze infinite loops in real appli-
cations. This can allow a user to conclusively determine that
a running program will never resume responding. Further, it
can provide a programmer with an automatically-constructed
non-termination proof, saving tedious and error-prone manual
analysis and debugging.

2. Overview

In this section, we give an informal overview of LOOPER
using the illustrative example in Figure 2. At a high level,
LOOPER alternates between two stages: dynamic symbolic
execution and theorem proving. Suppose that LOOPER has
begun observing the execution of some program when it is at
the head of a loop with concrete program stateMc,0. LOOPER
will symbolically execute the program in parallel with one full
concrete execution through the loop along some path π1. This
process produces a two-part symbolic abstraction of the loop’s
concrete execution. First, it produces a symbolic memory map
M1 – a description of the contents of the program’s memory
after the iteration as a function of the memory at the beginning
of the iteration. Second, it produces a path constraint Φ1 –
a predicate over the initial memory contents detailing how
the execution of π1 depended on the program memory. In
particular, whenever Φ1 holds true at the head of the loop,
then the program will execute exactly along path π1 and will
update memory exactly as described by M1. Note that Mc,0

will always be one such input satisfying Φ1.
After this loop iteration, LOOPER will attempt a non-

termination proof. Specifically, it will try to prove that when-
ever Φ1 holds at the loop head, Φ1 will hold again immediately
after the program executes one loop iteration. We write this
Φ1 =⇒ Φ1[M1] – that is, whenever Φ1 holds in some
concrete memory, then Φ1 must also hold after the concrete
memory has been updated as described by M1. (Essentially,
we form Φ1[M1] by replacing every occurrence of a variable
v in Φ1 withM1(v) – the value of v at the end of the iteration
as a function of the memory at the beginning of the iteration.)
If this implication is a tautology, then the loop must infinitely

1 i n t find(Node head, i n t x) {
2 i n t index = 0;
3 Node p = head;
4 whi le (p != n u l l) {
5 i f (p.data == x)
6 re turn index;
7 index++;
8 p = p.next;
9 }

10 re turn -1;
11 }

Fig. 2: List Membership Function.

Fig. 3: Circular Linked List.

execute the path π1. LOOPER uses an SMT solver to check
this implication.

If the implication is not a tautology, LOOPER will concretely
and symbolically execute additional loop iterations, producing
(M2,Φ2), (M3,Φ3), etc. After each iteration, LOOPER will
again try to prove that the program is stuck executing forever
along one of the observed paths through the loop. That is,
after k iterations, it will check if the following implication is
a tautology:

∧
i∈[1,k]

Φi =⇒
∨

j∈[1,k]

Φj [Mj]


If LOOPER fails to prove non-termination after some fixed
number of iterations, it reports that it cannot conclude whether
or not the target program will terminate.

2.1. Example

Figure 2 is a Java implementation of a linked-list member-
ship test. When called on a non-degenerate singly-linked list,
the function returns the first index at which x occurs in the
list or −1 if the list does not contain x. But when called on a
circular linked list that does not contain x, the function will
never terminate.

Consider an execution of the code in Figure 2 on the circular
linked list depicted in Figure 3 and with x = 7. Suppose
LOOPER begins its analysis when the program is at Line 5
with p pointing to object O13.

Step 1: Symbolic Execution. In the first observed concrete
execution of the loop, the program will check that p is not
null, see that 3 (O13.data) does not equal 7 (x), and then
increment index and update p to point to O25.

To execute this iteration symbolically, we treat the values
of p, x, O13.data, and O13.next as symbolic inputs to the
iteration, rather than concrete values. In terms of those inputs,
the path constraint and symbolic memory map are:

Φ1 = (p 6= null) ∧ (p = O13) ∧ (O13.data 6= x)

M1 = {p 7→ O13.next, x 7→ x, index 7→ index + 1,

O13.data 7→ O13.data, O13.next 7→ O13.next}

These are obtained by following the concrete execution
statement-by-statement, tracking its dependencies and effects
in terms of the inputs. E.g., checking the condition at Line 4
adds the constraint (p 6= null), because this condition was
true in the concrete execution, while the increment at Line 7
updates M1 so that M1(index) = index+ 1. (That is, the
value of index at the end of the iteration equals one plus the
value before the iteration.)

Note that our symbolic execution adds the constraint (p =
O13) when accessing a field of p at Line 5. That is, we
specialize our symbolic abstraction of the iteration for this
value of p, while leaving index fully symbolic.

Step 2: Attempt Non-Termination Proof. LOOPER then
constructs the non-termination argument Φ1 =⇒ Φ1[M1].
Specifically, in Φ1[M1] it substitutesM1(p) = O13.next for
p and M1(O13.data) = O13.data for O13.data, yielding,
leaving out the redundant (p 6= null)’s:

(p = O13) ∧ (O13.data 6= x) =⇒
(O13.next = O13) ∧ (O13.data 6= x)

This implication is not a tautology – O13.next is not O13 –
so LOOPER continues.

Steps 3-5. Similarly, the symbolic execution of the second
and third iterations, where p initially points to O25 and O37,
will produce:

Φ2 = (p 6= null) ∧ (p = O25) ∧ (O25.data 6= x)

M2 = {p 7→ O25.next, x 7→ x, index 7→ index + 1,

O25.data 7→ O25.data, O25.next 7→ O25.next}

Φ3 = (p 6= null) ∧ (p = O37) ∧ (O37.data 6= x)

M3 = {p 7→ O37.next, x 7→ x, index 7→ index + 1,

O37.data 7→ O37.data, O37.next 7→ O37.next}

In Step 4, LOOPER will fail to prove that the first two observed
iterations form an infinite loop. It will be able to prove Φ1 =⇒
Φ1[M1] ∨ Φ2[M1] – that an iteration of the first or second
kind always follows an iteration of the first kind. However, it
will find that Φ2 =⇒ Φ1[M2] ∨Φ2[M2] is not a tautology:

(p = O25) ∧ (O25.data 6= x) =⇒
(O25.next = O13) ∧ (O13.data 6= x)

∨ (O25.next = O25) ∧ (O25.data 6= x)

Step 6: Non-Termination Proof. After symbolically ex-
ecuting three iterations, LOOPER is able to prove that the

program is in an infinite loop. It constructs the three impli-
cations Φi =⇒ Φ1[Mi] ∨ Φ2[Mi] ∨ Φ3[Mi], one for each
of i = 1, 2, 3. For example, for i = 1, omitting the redundant
(p 6= null)’s:

(p = O13) ∧ (O13.data 6= x) =⇒
(O13.next = O13) ∧ (O13.data 6= x)

∨ (O13.next = O25) ∧ (O25.data 6= x)

∨ (O13.next = O37) ∧ (O37.data 6= x)

In constructing these implications, LOOPER notes that x,
the three data fields, and three next fields, are all read
but never written. Thus, it can add as simple invariants that
each of these symbolic inputs equals its fixed, concrete value.
With these invariants – e.g. (O13.next = O25), (x = 7),
and (O25.data = 12) for the i = 1 case above – all three
implications are clearly tautologies.

Discussion. Note that in the above proof we do not need
a sophisticated theory of select-and-store or shape analysis,
as the logical structure of the circular list is not modified in
the infinite loop. Thus, we can leverage the dynamic state
to concretize our non-termination argument so that it can be
verified by a simple SMT solver handling only integer linear
arithmetic. This same technique allows us to handle non-linear
arithmetic and even calls to pure methods whose source is
unavailable. We call our approach lightweight to contrast it
with approaches requiring more powerful and more expensive
reasoning and non-linear solving. In the next section, we
formally present this technique.

3. Symbolic Execution for Non-Termination

In this section, we present the formal basis of our technique
for using symbolic execution to reason about the potential
non-termination of a running program. First, we present a
simple imperative object-oriented language on which we will
illustrate the technique. In Section 3.2, we discuss what it
means precisely for a program in this language to be in an
infinite loop, and sketch a way to reason abstractly about
such loops. In Section 3.3, we describe the key aspects of
our symbolic execution and show how it abstracts a loop’s
execution. In Section 3.4, we formalize our reasoning about
these abstractions.

3.1. Programming Model and Concrete Semantics

We describe our technique on a simple Java-like imperative
language with objects, fields, and dynamic allocation. It is not
difficult to extend the model to support most Java features,
such as method calls, exceptions, and arrays.

A program P is a sequence of labeled statements, with each
statement one of: (1) a HALT statement, (2) an assignment
lv := e to lvalue lv of the value of side-effect-free expression
e, (3) a conditional if e then goto l, where l is the label
of another statement and e is a side-effect-free expression, or

(4) an allocation lv := new T assigning to lvalue lv a newly-
allocated object of type T .

The base values in our language are objects, booleans, and
unbounded integers. Lvalues lv are either program variables
v or field references v.f . Expressions can include lvalues,
constants, and arithmetic operators, such as + and <. As in
Java, all lvalues must be assigned before they are first read.

The concrete state of a running program consists of a set of
objects O and a concrete memory map Mc : X t (F ×O)→
V , where X denotes the set of program variables, F the set of
field names, and V the set of concrete program values – i.e.
unbounded integers, booleans, and references to the objects in
O.

Program statements have their natural semantics. Lvalues
are looked up in the current state – Mc(x) for variable x and
Mc(f,Mc(v)) for field v.f – and assignments update Mc.
An allocation new T() returns an unused o from O.

Note that we use somewhat abstracted semantics – un-
bounded integers and unlimited memory – rather than strict
machine semantics. In Java or C, loops “while (x > 0) {
...; x++; }” or “while (e) { x := new T; ...
}” are not technically infinite loops due to integer overflow
and limited heap space. However, we believe it is valuable
to report such “logical” or “algorithmic” infinite loops. Such
algorithmic infinite loops are very likely bugs, especially when
they degrade a program’s responsiveness. Our technique can
be applied to machine semantics, as well.

3.2. Proving a Loop is Infinite

Suppose we believe that a program is stuck infinitely taking
paths π1, . . . , πk through a loop. Each of these πi induces a
partial map πi : ConcreteStates→ 2ConcreteStates, which takes a
concrete memory which leads to execution along πi to the set
of memories that can result from running πi. These induced
maps are partial or guarded transition functions. (Allocation
new T() introduces non-determinism because it can return
any new, unique object from O.)

Proposition 3.1. Let π1, . . . , πk be paths through a loop in
running program P and let Mc,0 be the concrete state of P
at the loop head. Let R denote the closure of {Mc,0} under
the functions induced by the πi. Then, the program will loop
forever along paths π1, . . . πk iff

R ⊆
⋃
i

dom(πi)

The set R in Proposition 3.1 is the set of all concrete states
at the loop head that result from applying any of the πi any
number of times to initial state Mc,0. The proposition says
that the πi form an infinite loop if and only if, however many
times any of the πi have been executed, it is always possible
to execute another one of the πi. In the language of [3], set
R is recurrent for the πi.

Rather than reason directly about transition functions πi and
set R, we will use symbolic execution to generate abstractions

of the πi. In Definition 3.2, we formally define such an
abstraction.

Definition 3.2. Function f : ConcreteStates → 2ConcreteStates

abstracts π iff

dom(f) ⊆ dom(π) and Mc ∈ dom(f)
=⇒ π(Mc) ⊆ f(Mc)

That is, f is applicable only when π is, and applying f
always yields (at least) the actual concrete states. We call
f an abstract guarded transition function.

In Proposition 3.3, we show how such abstractions can be
used to prove non-termination. In essence, it suffices to find
a set of abstractions f1, . . . , fm of some given π1, . . . , πk so
that the abstractions form a closed transition system. That is,
for each fh and for all Mc ∈ dom(fh), we have fh(Mc) ⊆⋃

j dom(fj).

Proposition 3.3. Let f1, . . . , fm be abstract guarded transi-
tion functions, each abstracting one of π1, . . . , πk. Suppose
that Mc,0 ∈

⋃
j dom(fj) and that f1, . . . , fm is a closed

transition system. Then,

R ⊆
⋃
j

dom(fj) ⊆
⋃
i

dom(πi)

and thus, by Proposition 3.1, the πi will loop forever.

The first inclusion is true by induction on the number of
applications of any πi to Mc,0 and because f1, . . . , fm is
closed. The second inclusion follows trivially from the fact
that each dom(fj) is contained in some dom(πi).

3.3. Symbolic Execution

We use combined symbolic and concrete execution – i.e.
concolic execution – to produce sound abstractions of the
observed paths π through a loop in running program P . Recall
that X , O, and F denote the program variables, objects, and
field names of an executing program P . Let E denote the set
of all linear expressions over X and F ×O.

Then, symbolic execution along some concretely-executed
path π yields: (1) a partial symbolic memory map M : X t
(F×O)→ Et{⊥} which symbolically encodes the updates π
makes to memory in terms of the memory before π is executed,
and (2) a path constraint Φ, a predicate over X t (F ×O).

The details of computing M and Φ during the statement-
by-statement concolic execution of path π are standard [2],
[1]. Initially, M is empty and Φ = true. Assignment state-
ments lv := e set the mapping for M(lv) to M(e), the
expression resulting from evaluating e in M. Conditional
statements if e then goto l update Φ to either Φ∧M(e)
or Φ∧¬M(e), depending on whether e is true or false in the
concrete execution. Whenever some expression goes beyond
the power of our decision procedure, linear arithmetic in this
case, we simplify by replacing symbolic variables with their
concrete values.

We introduce three key changes to our concolic execution:
1) We treat all memory read by path π as symbolic inputs.

That is, whenever we find no mapping M(l) when
looking up some location l ∈ Xt(F×O), we introduce
M(l) = l.

2) Whenever we simplify an expression using concrete
values, we constrain Φ so that the simplification is
sound. For example, in executing x = y*y, we not
only set x to the concrete valueMc(y)2, but we add to
Φ the constraint (M(y) = Mc(y)) that the symbolic
expression M(y) stored for y equals its concrete value
Mc(y). Similarly, whenever we dereference a field p.f,
to read or write it, we constrain (M(p) =Mc(p)). That
is, the symbolic pointer M(p) stored for p must point
to its concrete target.
This is necessary so that our abstraction is sound – i.e.
that whenever concrete inputs satisfy Φ, M accurately
captures the updates made by π.

3) We also abstract any allocation new T() done by π.
Specifically, we treat new T() as having symbolic
value ⊥. And we do not add to Φ any constraints involv-
ing ⊥. This is sound because any constraint comparing
a newly-allocated object to itself, another object, or
null, must either always be true or always be false.
(Because, e.g., new T() can never be a previously-
allocated object.) Further, we remember all concrete
objects o1, . . . , on allocated by π. At the end of our
concolic execution, we remove from M all symbolic
mappings M(f, oi) to fields of those newly-allocated
objects.
This is also necessary for soundness – the symbolic
abstraction of π must not depend on the particular object
(i.e. address) returned by an allocation.

Thus, our concolic execution guarantees that: (1) Every
solution to Φ is an input that drives execution down π – i.e. in
dom(π). (2) Every update made by π is captured accurately
byM, except those to fields of newly-allocated objects. Thus,
dom(M) is the set of all locations read or written by π, except
for fields of new objects. (3) M(l) = ⊥ for any location to
which π stores the address of a newly-allocated object. We
can now argue that this symbolic execution abstracts a path
π in the sense of Definition 3.2:

Definition 3.4. For path constraint and symbolic memory
map (Φ,M), define an abstract guarded transition func-
tion α[Φ,M] : ConcreteStates → 2ConcreteStates by M′c ∈
α[Φ,M](Mc) iff:
• Whenever l ∈ dom(Mc) and l 6∈ dom(M), then
M′c(l) =Mc(l).

• Whenever l ∈ dom(M) and M(l) 6= ⊥, then M′c(l) =
Mc(M(l))
(where Mc(M(l)) denotes expression M(l) evaluated
in Mc.)

The domain of α[Φ,M] is the set of all concrete states Mc

satisfying Φ. Note that Φ specifies only the domain, while M

specifies the transition function itself.

Proposition 3.5. Suppose (Φ,M) is the result of symbolically
executing π as described in Section 3.3. Then, α[Φ,M]
abstracts π.

Proof: We do not formally prove this proposition, but the
key to the argument is as follows. Let Mc be some concrete
state in the domain of α[Φ,M]. That is,Mc satisfies Φ, soM
accurately records all updates made by executing π onMc to
variables and preexisting objects. Then, for anyM′c ∈ π(Mc):

• If l ∈ dom(Mc) and l 6∈ dom(M), then l is a variable
or field of a preexisting object and thus is not set by π.
Therefore, M′c(l) =Mc(l).

• If l ∈ dom(M) and M(l) 6= ⊥, then M accurately cap-
tures the update made by π. Thus, M′c(l) =Mc(M(l))
– i.e. expression M(l) evaluated in Mc.

So, by Definition 3.4, M′c ∈ α[Φ,M](Mc). Further, every
Mc satisfying Φ is in dom(π), so dom(α[Φ,M]) ⊆ dom(π).
Therefore, α[Φ,M] abstracts π.

3.4. Constructing a Non-Termination Argument

Suppose we have symbolically executed several itera-
tions π1, . . . , πk of a loop in a program P , yielding
(Φ1,M1), . . . , (Φk,Mk). We wish to use these symbolic
abstractions to prove, via Proposition 3.3, that the loop is non-
terminating.

We now show how to construct a Φj [Mi] and connect non-
termination arguments Φi =⇒ Φ1[Mi] ∨ · · · ∨ Φk[Mi] to
proofs via Proposition 3.3.

Definition 3.6. For path constraint Φj and symbolic memory
map Mi, we define Φj [Mi] as follows. Let L denote the
set of all locations from X t (F × O) appearing in formula
Φj . If for any l ∈ L either l 6∈ dom(Mi) or Mi(l) = ⊥,
then Φj [Mi] = false. Otherwise, Φj [Mi] is the predicate
obtained by substituting for every occurrence of each l ∈ L
the expression Mi(l).

Proposition 3.7. Suppose Φi =⇒ Φ1[Mi] ∨
· · · ∨ Φk[Mi] for each i. Then, the abstract transitions
α[Φ1,M1], . . . , α[Φk,Mk] form a closed system.

Proof: Let Mc be a concrete state in the domain of
α[Φi,Mi] – i.e. a Mc satisfying Φi. Then, Mc must also
satisfy some Φj [Mi].

Let M′c ∈ α[Φi,Mi](Mc). For every location l in Φj , we
have l ∈ dom(Mi) and Mi(l) 6= ⊥, so by Definition 3.4 we
have M′c(l) = Mc(Mi(l)). Therefore, Φj(M′c) must equal
Φj [Mi](Mc).

That is, α[Φi,Mi](Mc) is contained in the domain
of some α[Φj ,Mj] for every such Mc. Thus, the
α[Φ1,M1], . . . , α[Φk,Mk] form a closed system.

Therefore, if we prove each Φi =⇒ Φ1[Mi]∨· · ·∨Φk[Mi]
is a tautology, then by Proposition 3.3, program P will loop
forever along paths π1, . . . , πk.

Algorithm 1 LOOPER (P)
1: Input: Executing program P
2: repeat
3: head ⇐ select a new statement for potential loop head
4: run P until it reaches statement head
5: I ⇐ {} // initialize the set of abstract iterations
6: repeat
7: (Φ,M) ⇐ symbolically and concretely execute P until

head is reached again
8: I ⇐ I ∪ (Φ,M)
9: Γ ⇐ generateInvariants(I)

10: σ ⇐ isNonTerminating(I, Γ) // package and send to SMT
solver

11: if σ then
12: return σ // report an infinite loop
13: end if
14: until iteration limit is reached
15: until every possible loop head statement has failed
16: return false // report failure

3.5. Limitations

Although LOOPER handles some infinite loops which mod-
ify the heap (e.g. the jEdit case study loop grows a linked list),
it typically cannot reason about loops where non-termination
depends on the particulars of heap mutation in every loop
iteration. This is because our symbolic execution is conser-
vative in concretizing pointers, and our symbolic reasoning
insufficiently powerful. We believe combining our techniques
with shape analysis and more powerful invariant generation
and proving would be valuable future work.

Further, LOOPER does not currently handle infinite recur-
sion. However, dealing with recursion is a fairly straightfor-
ward extension.

4. Algorithm
We present the overall LOOPER algorithm in Algorithm 1.

LOOPER takes as input a running program P , identifies poten-
tial loop heads and loop iterations, symbolically executes these
iterations, and repeatedly attempts to prove that the program
will never terminate. We describe these steps below.

Loop Head Selection. A loop head is a statement in
program P to which the observed execution repeatedly returns.
We must select a loop head in order to get paths π that loop
back to the head – i.e. the iterations. Note that, for certain
loops, some loop heads may allow for the construction of a
non-termination proof while others may not.

LOOPER iterates through the possible loop head statements
one by one, attempting to prove that each gives rise to abstract
iterations for which we can construct a non-termination proof.

Symbolic Execution. Once we have chosen a loop head, we
identify loop iterations by watching executing program P until
it returns to the loop head. We perform symbolic execution on
each observed iteration starting with an empty symbolic state,
and then add the resulting abstract iteration to set I. After
each such iteration, we attempt to construct a non-termination
proof from all of the iterations we have collected so far.

Invariant Generation. In this step, we attempt to generate
simple arithmetic invariants about each symbolic variable. The
invariants are global to the set of iterations we have in I.
Any invariant generation procedure can be plugged in here,
although we needed only simple invariant templates of the
form x = n, x ≤ n, and x ≥ n for our case studies. If we
are able to determine that a symbolic variable remains fixed
for all iterations in I, we replace it with its concrete value,
maintaining soundness and simplifying theorem proving

Proving Non-Termination. Once we have a set of invari-
ants, we construct the implications asserting that our abstract
iterations form a closed abstract transition system, as described
in the previous section. We then use an off-the-shelf SMT
solver to check if these implications are tautologies.

5. Implementation

Our prototype implementation targets Java programs. We
use the Soot compiler framework [4] to instrument Java classes
at the bytecode level. Our prototype uses a heuristic to identify
loop heads. Conceptually, we iterate over all potential loop
heads.

We designed our prototype to enable easy substitution of
invariant generators and SMT solvers. We currently have im-
plemented our own simple template-based invariant generation
and use the off-the-shelf Yices [5] SMT solver to verify
invariants and generate non-termination proofs. The simple
invariants that we generate are of the form x = n, x ≤ n, and
x ≥ n, and we compute n by simply observing the concrete
values of x. Due to our use of the concrete program state to
simplify our non-termination arguments, as well as the simple
form of our invariants, the generation of invariants and proof
of non-termination is relatively inexpensive—i.e. lightweight.

Real-time performance was not a design goal for LOOPER
because the identification of infinite loops is intended to be
performed on-demand. The unoptimized LOOPER prototype
has a runtime overhead up to 10,000X because of I/O costs of
printing a trace statement for each instruction. We expect that
an optimized implementation of LOOPER would have a more
typical 10-100X slowdown.

Further, LOOPER can be implemented so that it incurs
no overhead until activated by the user. With dynamic class
reloading, uninstrumented classes can be replaced with in-
strumented classes during program execution. We believe
that dynamic class reloading would make a 100X overhead
acceptable as it would only need to be paid when the program
becomes unresponsive, and the typical infinite loop iterations
we have observed are reasonably short.

Our prototype models Java features which have the potential
to jeopardize the soundness of our proof generation. The key is
to ensure that a memory satisfying a generated path constraint,
Φk, will always follow the same path through iteration k. Our
implementation soundly handles object field accesses, array
accesses, virtual method calls, calls to certain pure native
methods, and exceptions.

1 i n t offset = start;
2 HyperSearchResult lastResult = n u l l;
3 f o r (i n t counter = 0; ; counter++) {
4 i n t line = buffer.getLineOfOffset(offset);
5 boolean startOfLine =
6 (buffer.getLineStartOffset(line) == offset);
7
8 buffer.getText(offset,end - offset,text);
9 Match match = matcher.nextMatch(
10 new SegmentCharSequence(text, f a l s e),
11 startOfLine, endOfLine, counter==0, f a l s e);
12 i f (match == n u l l) break;
13
14 newLine =
15 buffer.getLineOfOffset(offset + match.start);
16 i f ((lastResult == n u l l)
17 || (lastResult.line != newLine)) {
18 lastResult = new HyperSearchResult(...);
19 ...
20 }
21
22 lastResult.addOccur(offset + match.start,
23 offset + match.end);
24 offset += match.end;
25 resultCount++;
26 }

Fig. 4: jEdit regular expression bug

6. Case Studies

We tested our LOOPER prototype on three Java benchmarks:
a reported non-termination bug in the jEdit text editor, a
reported non-termination bug extracted from the Ganymede
network directory management system, and the infinite traver-
sal of a cyclic linked-list in a Javascript program run in
the Rhino Javascript interpreter. These benchmarks provide
evidence that our technique can be effectively applied to detect
infinite loops in large, real-world Java applications.

6.1. jEdit

jEdit (www.jedit.org) is a text editor oriented towards pro-
grammers containing 100K lines of code. We tested LOOPER
on an infinite loop bug reported to the project’s bug tracker
on version jEdit4.3pre6. The bug is triggered by searching
through a file using the one-character regular expression for
beginning (ˆ) or end of line ($). This causes jEdit to enter a
search loop where it updates an offset in the text buffer with
the length of each found match. Since that length is zero for
these particular inputs, the search never progresses and results
in an infinite loop.

For this case study, we instrumented the jEdit byte code,
opened the program, and manually triggered the infinite loop
by searching for the ˆ symbol. We terminated the execution
after several seconds. This allowed us to generate a trace of
the infinite loop, which we then fed to the LOOPER back end
for proof generation.

Figure 4 shows part of the jEdit code that the infinite
loop traverses. The actual search for the regular expression
pattern occurs in the call to the SearchMatcher method

nextMatch in line 9. The result of the call is the object
match that contains the start and end offset of the text that
matches the regular expression.

When the search request is a regular expression whose
match in the line has size 0 then the result of the call will
satisfy match.start == match.end. Examples of such
regular expressions are the caret (ˆ) and dollar ($) symbols
that match the beginning and end of a line respectively.

The only way to leave the loop is the result of the call to
the nextMatch method to be null or equivalently the regular
expression to not have any more matchings in the text.

The variable lastResult maintains a list of search oc-
currences of the search item in the current line. If it is the first
time through the loop, lastResult will be null and will be
initialized on line 18. If a match is found in a new line, i.e. the
newLine offset is different than the current lastResult
line, a new lastResult will be allocated as well. Thus, the
code between the lines 14 and 20 is not relevant in the steady
state of the infinite loop case.

The new match is inserted in the list of matchings in
line 22 and the offset is updated in 24. The loop becomes
infinite when the size of the match is equal to 0. In that
case, match.start == match.end == 0 and offset
in line 24 will not be updated. Therefore we will get to the
start of the loop having the same offset value, passing the
same input to nextMatch and having increased the size of
the matchings list lastResult by one.

Our LOOPER prototype generates a proof of the non-
termination of this loop. The size of the detected infinite loop,
including all statements that are executed inside the method
calls of the loop, is 1356 symbolic execution statements which
translates to approximately 350 java statements. LOOPER
generates 52 path constraints and 37 symbolic variables. It
fixes 32 of those symbolic variables to their concrete values
and produces 4 simple invariants.

Every match found in the loop is represented by an object
that is added to the front of a list of occurrences of the
search. In our case, an infinite number of these objects are
allocated. Note here that we distinguish between abstract non-
termination and machine semantic non-termination. Eventu-
ally, this loop will terminate due to lack of heap space.
However, this loop does not terminate in an abstract sense, and
we feel this is important to report to the user. This case study
also demonstrates LOOPER’s robustness in the face of heap
mutation. Each iteration mutates the heap, but our tool is able
to ignore these changes because they do not flow symbolically
into the path constraints and therefore they do not affect the
non-termination proof.

6.2. Ganymede

Our second case study of is an infinite loop present in
the Ganymede project. Ganymede is a network directory
management system containing 100K lines of Java code and
250 distinct Java classes. In an older version of the program,

1 p u b l i c XMLItem getNextItem()
2 throws SAXException
3 {
4 XMLItem item = n u l l;
5 whi le (item == n u l l) {
6 item = reader.getNextItem();
7 i f (item i n s t a n c e o f XMLError)
8 throw new SAXException(item.toString());
9 i f (item i n s t a n c e o f XMLWarning) {

10 err.println("Warning!: " + item);
11 item = n u l l;
12 }
13 }
14 re turn item;
15 }

Fig. 5: Ganymede Infinite Loop

there was a bug that led to an infinite loop when the system
was given an end-of-file XML stream to parse.

Figure 5 shows the buggy helper method in the server which
reads an item from an XML stream and checks it for any
errors or warnings. When given an end-of-file XML stream,
the reader object can get into a state where it will always
return null on a call to getNextItem(). The null return
will fail both instanceof checks and the loop will go on
to the next iteration, only to continually get null back from
reader.

For this case study, we extracted the relevant portions of
the loop from the server source and created a test harness that
would activate the loop.

We applied the LOOPER prototype to an execution of our
test harness. This loop was small compared to the previous
case study, made up of 90 symbolic execution statements. The
loop followed a single path of execution and only one iteration
was needed to reason that the loop was infinite. LOOPER
generated five path constraints, and introduced seven symbolic
variables. All of these were concretized and no invariants were
required for the proof.

6.3. Rhino

Rhino (www.mozilla.org/rhino) is a Javascript engine writ-
ten entirely in Java. It is comprised of roughly 182 classes and
62K lines of code. Since Rhino interprets Javascript code, any
Javascript code that has infinite loops will make the Rhino
interpreter loop infinitely as well. The Javascript code that
we used as input to Rhino is a Javascript implementation of
the Java circular linked list example in Section 2 shown in
Figure 6.

LOOPER generates three loop abstractions consisting of
roughly 1600 Java statements each (6768 intermediate sym-
bolic execution statements) over the course of generating the
non-termination proof. The path constraints generated have
863 conjuncts mostly due to a very large switch statement
whose variable is the type of the current bytecode interpreted.
Every unsuccessful comparison to a case expression results
in an additional constraint. In total, 83 symbolic variables are
introduced, all but one of which are concretized.

1 function member(head, x) {
2 var p = head;
3 whi le (p !== n u l l) {
4 i f (p.data === x) {
5 re turn true;
6 }
7 p = p.next;
8 }
9 re turn f a l s e;

10 }

Fig. 6: Javascript Circular Linked List Example

The body of this loop is found very deep in the execution
because the Rhino engine has a very big set-up phase. The first
invocation of the function which interprets the loop occurs
after approximately 150,000 symbolic execution statements.
This illustrates the benefits of dynamic detection of infinite
loops as finding this loop could pose a challenge for static
methods.

6.4. Discussion

To further validate our approach, we would like to evaluate
LOOPER on additional benchmarks. So far, these three infinite
loops are the only ones which we have been able to reproduce
and on which we have been able to run our Java tracing
infrastructure.

For these three case studies, the cost of running LOOPER
was dominated by the overhead of our Java instrumentation
for producing a trace to be symbolically executed. Generat-
ing invariants, constructing a non-termination argument, and
proving the non-termination all together required less than a
second for each case study.

7. Related Work

Gupta et al. [3] propose a method of searching for non-
terminating program executions and implement it in a tool
called TNT. TNT uses concolic test generation [1], [2] to
find candidate executions containing loops. For analysis of
programs with machine semantics – i.e. bounded integers
and bitwise operators – a bit-precise SMT solver is used to
determine if there are inputs which cause the loop to execute
infinitely. For linear programs with unbounded integers, TNT
uses sophisticated invariant generation like that of [6], [7],
[8] to find loop invariants that lead to non-termination and
which hold for some program input. A backtracking nonlinear
constraint solver is used to compute such an invariant.

Although Gupta et al. focus on exhaustively searching for
non-terminating executions, their techniques can be applied at
runtime, as well. Similarly, our techniques could perhaps be
combined with an exhaustive enumeration of candidate loops
using dynamic test generation.

TNT’s sophisticated invariant generation enables it to detect
more linear arithmetic loops than our work. By using the

concrete program state to simplify our non-termination argu-
ments, as well as by using only simple invariants, LOOPER
can use an off-the-shelf and highly optimized SMT solver
rather than more powerful and more expensive reasoning.
Further, by generating multiple simple abstractions for each
observed path through a loop, LOOPER can reason about
loops whose non-termination depends on the shape of the
heap, such as the infinite traversal of a circular linked list.
TNT cannot currently catch non-termination that depends
on shape assumptions on data structures. LOOPER can also
reason about loops combining bounded nonlinear or bitwise
arithmetic with unbounded linear arithmetic, or loops which
irregularly alternate between different loop paths.

Velroyen et al. [9] have proposed another approach for
statically finding non-terminating inputs for a program. Their
technique relies heavily on automated, iterative invariant gen-
eration, and may be less scalable than TNT.

Proving the termination of programs is a complementary
technique which can be used in concert with our approach.
Terminator [10] combines work from [11] to reduce the
problem of proving termination to checking the disjunction
of a set of rank functions using binary reachability analysis.
There have also been extensions of Terminator to target heap
manipulating programs [12], [13] and multithreaded programs
[14]. Other work on proving program termination includes
[15], [16].

There has also been work in proving non-termination and
termination in other areas, such as term-rewrite systems [17]
and functional programs [18].

As described in Section 3.3, we use a concolic execution
similar to that of DART [1] and CUTE [2]. Like in those
works, we use the concrete state to simplify pointer and
nonlinear expressions, but we add additional constraints to
ensure that our symbolic abstraction is sound. And, as our
concolic execution is on only a piece of a whole, running
program, we treat all memory read in each loop iteration
as symbolic inputs, rather than having pre-specified inputs.
Further, our abstraction of allocation appears to be novel.

8. Conclusion

We have presented a lightweight, dynamic algorithm,
LOOPER, that can prove loops are non-terminating at runtime.
LOOPER uses a combination of symbolic execution, concrete
execution, and theorem proving to soundly diagnose loops. We
have described a prototype implementation of LOOPER and
our experience running on infinite loops found in several large,
real-world programs. Although we have implemented LOOPER
for Java it can be easily extended to other programming
languages. We believe that LOOPER is a simple and practical
tool that can prove non-termination in real-life programs and
provide useful debugging information.

9. Acknowledgements

This work supported in part by Microsoft (Award #024263)
and Intel (Award #024894) funding and by matching funding
by U.C. Discovery (Award #DIG07-10227), by NSF Grants
CNS-0720906 and CCF-0747390, and by a DoD NDSEG
Graduate Fellowship.

References

[1] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated
random testing,” in Programming language design and implementation.
ACM, 2005, pp. 213–223.

[2] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine
for C,” in ESEC/FSE-13. ACM, 2005, pp. 263–272.

[3] A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G.
Xu, “Proving non-termination,” in POPL. ACM, 2008, pp. 147–158.

[4] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co,
“Soot - a Java optimization framework,” in CASCON 1999, 1999, pp.
125–135.

[5] B. Dutertre and L. M. de Moura, “A fast linear-arithmetic solver for
dpll(t),” in Computer Aided Verification, ser. LNCS, vol. 4144, 2006,
pp. 81–94.

[6] M. A. Colón, S. Sankaranarayanan, and H. B. Sipma, “Linear invariant
generation using non-linear constraint solving,” Computer Aided Verifi-
cation, 2003.

[7] D. Kapur, “Automatically generating loop invariants using quantifier
elimination,” in IMACS Intl. Conf. on Applications of Computer Algebra,
vol. 116, 2004.

[8] S. Sankaranarayanan, H. B. Sipma, and Z. Manna, “Non-linear loop
invariant generation using gröbner bases,” in POPL ’04. New York,
NY, USA: ACM, 2004, pp. 318–329.

[9] H. Velroyen and P. Rümmer, “Non-termination checking for imperative
programs,” in Tests and Proofs, Second International Conference, TAP
2008, Prato, Italy, ser. LNCS, vol. 4966. Springer, 2008, pp. 154–170.

[10] B. Cook, A. Podelski, and A. Rybalchenko, “Termination proofs for
systems code,” in Programming language design and implementation.
ACM, 2006, pp. 415–426.

[11] A. Podelski and A. Rybalchenko, “A complete method for the synthesis
of linear ranking functions,” Lecture notes in computer science, pp. 239–
251, 2003.

[12] J. Berdine, B. Cook, D. Distefano, and P. O’Hearn, “Automatic
termination proofs for programs with shape-shifting heaps,” Computer
Aided Verification, 2006. [Online]. Available: http://dx.doi.org/10.1007/
11817963 35

[13] J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. O’Hearn,
“Variance analyses from invariance analyses,” in Proceedings of the 2007
POPL Conference, vol. 42, no. 1. ACM New York, NY, USA, 2007,
pp. 211–224.

[14] B. Cook, A. Podelski, and A. Rybalchenko, “Proving thread termi-
nation,” in Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation. ACM New York,
NY, USA, 2007, pp. 320–330.

[15] A. R. Bradley, Z. Manna, and H. B. Sipma, “The polyranking principle,”
Automata, Languages and Programming, pp. 1349–1361, 2005.

[16] P. Cousot, “Proving program invariance and termination by parametric
abstraction, lagrangian relaxation and semidefinite programming,” in
Proc. VMCAI, vol. 3385. Springer, 2005, pp. 1–24.

[17] J. Giesl, P. Schneider-Kamp, and R. Thiemann, “AProVE 1.2: Automatic
Termination Proofs in the Dependency Pair Framework,” LECTURE
NOTES IN COMPUTER SCIENCE, vol. 4130, p. 281, 2006.

[18] C. Lee, N. Jones, and A. Ben-Amram, “The Size-Change Principle
for Program Termination,” in Annual Symposium on Principles of
Programming Languages: Proceedings of the 28 th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages: London,
United Kingdom, vol. 2001, 2001, pp. 81–92.

