
NDetermin: Inferring Nondeterministic Sequential
Specifications for Parallelism Correctness

Jacob Burnim Tayfun Elmas George Necula Koushik Sen

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

{jburnim,elmas,necula,ksen}@cs.berkeley.edu

Abstract

Nondeterministic Sequential (NDSeq) specifications have been
proposed as a means for separating the testing, debugging, and veri-
fying of a program’s parallelism correctness and its sequential func-
tional correctness. In this work, we present a technique that, given a
few representative executions of a parallel program, combines dy-
namic data flow analysis and Minimum-Cost Boolean Satisfiability
(MinCostSAT) solving for automatically inferring a likely NDSeq
specification for the parallel program. For a number of Java bench-
marks, our tool NDETERMIN infers equivalent or stronger NDSeq
specifications than those previously written manually.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs

General Terms Algorithms, Reliability, Verification

1. Nondeterministic Sequential Specifications

As multicore and manycore processors become increasingly com-
mon, more and more programmers must write parallel software.
But writing such parallel software can be difficult and error prone.
In addition to reasoning about the often-sequential functional cor-
rectness of each component of a program in isolation, a program-
mer must simultaneously consider whether multiple components
running in parallel, their threads interleaving nondeterministically,
can harmfully interfere with one another.

In an earlier paper [2] we proposed nondeterministic sequential
(NDSeq) specifications as a means for decomposing the reasoning
about a program’s parallelism correctness and its functional cor-
rectness. To explain the problem addressed by NDSeq specifica-
tions, consider the simple parallel program in Figure 1(a). The pro-
gram consists of a parallel for-loop, written as coforeach—each
iteration of this loop attempts to perform a computation (Line 6) on
shared variable x, which is initially 0. Each iteration uses an atomic
compare-and-swap (CAS) operation to update shared variable x. If
multiple iterations try to concurrently update x, some of these CAS’s
will fail and those parallel loop iterations will recompute their up-
dates to x and try again.

Copyright is held by the author/owner(s).

PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.

ACM 978-1-4503-1160-1/12/02.

1: coforeach (i in 1,...,N) {

2: bool done = false;

3: while (!done) {

4:

5: int prev = x;

6: int curr = i * prev + i;

7: if (CAS(x,prev,curr)) {

8: done = true;

9: } } }

(a) Parallel program

1: nd-foreach(i in 1,...,N) {

2: bool done = false;

3: while (!done) {

4: if (*) {

5: int prev = x;

6: int curr = i * prev + i;

7: if (CAS(x,prev,curr)) {

8: done = true;

9: } } } }

(b) NDSeq specification

Figure 1. Example program to perform the reduction in line 6 for
the integers {1,. . . ,N}, in some arbitrary order.

A natural approach to specifying parallelism correctness would
be to specify that the program in Figure 1(a) must produce the same
final value for x as a version of the program with all parallelism
removed—i.e., the entire code is executed by a single thread. How-
ever, in this case we do not get a sequential program equivalent
to the parallel program. For example, the parallel program in Fig-
ure 1(a) is free to execute the computations at line 6 in any non-
deterministic order. Thus, for the same input value of x, different
thread schedules can produce different values for x at the end of
the execution. On the other hand, executing the loop sequentially
from 1 to N will always produce the same, deterministic final value
for x. Suppose that such extra nondeterministic behaviors due to
thread interleavings are intended; the challenge here is how to ex-
press these nondeterministic behaviors in a sequential specification.

We addressed this challenge in [2] by introducing a specifica-
tion mechanism that the programmer can use to declare the in-
tended, algorithmic notions of nondeterminism in the form of a
sequential program. Such a nondeterministic sequential specifica-
tion (NDSeq) for our example program is shown in Figure 1(b).
This specification is intentionally very close to the actual parallel
program, but its semantics is sequential with two nondeterministic
aspects. First, the nd-foreach keyword in line 1 specifies that the
loop iterations can run in any permutation of the set 1, . . . , N. This
part of the specification captures the intended (or algorithmic) non-
determinism in the behavior of the program, caused in the parallel
program by running threads with arbitrary schedules. Any addi-
tional nondeterminism is an error, due to unintended interference
between interleaved parallel threads, such as data races or atomic-
ity violations. Second, the if(*) keyword in line 4 specifies that the
iteration body may be skipped nondeterministically, at least from a
partial correctness point of view; this is acceptable, since the loop
in this program fragment is already prepared to deal with the case
when the effects of an iteration are ignored following a failed CAS
statement. In summary, all the final values of x output by the paral-
lel program in Figure 1(a) can be produced by a feasible execution
of the NDSeq specification in Figure 1(b). Then, we say that the
parallel program obeys its NDSeq specification, and, the functional
correctness of a parallel program can be tested, debugged, and ver-
ified sequentially on the NDSeq specification, without any need to
reason about the uncontrolled interleaving of parallel threads.

329

2. Inferring NDSeq Specifications

The key difficulty with the manual approach is that writing such
specifications, and especially the placement of the if(*) con-
structs, can be can be a time-consuming and challenging process,
especially to a programmer unfamiliar with such specifications. If
a programmer places too few if(*) constructs, she may not be able
to specify some intended nondeterministic behaviors in the paral-
lel code. However, if she places too many if(*) constructs, or if
she place them in the wrong places, the specification might allow
too much nondeterminism, which will likely violate the intended
functionality of the code.

Therefore, we believe that automatically inferring NDSeq spec-
ifications can save programmer time and effort in applying NDSeq
specifications. In particular, we believe that using an inferred spec-
ification as a starting point is much simpler than writing the whole
specification from scratch. More generally, such inferred specifica-
tions can aid in understanding and documenting a program’s paral-
lel behavior.

In [2], we proposed a sound runtime technique that, using
conflict-serializability check, checks a given representative inter-
leaved execution trace of a structured-parallel program, whether
there exists an equivalent, feasible execution of the NDSeq spec-
ification. Our contribution in this work is to give an algorithm,
running on a set of input execution traces, for inferring a minimal
nondeterministic sequential specification such that the checking ap-
proach described in [2] on the input traces succeeds. Choosing a
minimal specification—i.e., with a minimal number of if(*), is a
heuristic that makes it more likely that the inferred specification
matches the intended behavior of the program.

Our key idea is to reformulate the runtime checking algorithm
in [2] as a constraint solving and optimization problem, in particu-
lar a Minimum Cost Boolean Satisfiability (MinCostSAT) problem.
In order to infer an NDSeq specification, we observe a set of rep-
resentative parallel execution traces for which the standard conflict
serializability check gives conflict cycles indicating possible viola-
tions of the NDSeq specification. Similarly to the algorithm in [2],
we utilize a dynamic dependence analysis with a program’s spec-
ified nondeterminism in our MinCostSAT formulation. The con-
structed MinCostSAT formula contains variables corresponding to
possible placement of if(*)s in the program. If this formula is sat-
isfiable, then the solution gives us a minimal set of statements S
in the program such that the input traces are all serializable—i.e.,
conflict cycles involving these statements in the input traces can
be soundly ignored—with respect to the NDSeq specification ob-
tained by enclosing each statement in S with if(*). The minimal
such solution for our example in Figure 1(a) places a single if(*)
that encloses lines 5-8. Thus, our algorithm produces the correct
NDSeq specification given in Figure 1(b). We refer the reader to
our technical report [1] for the further details of our MinCostSAT
formulation.

3. Results

We implemented our technique in a prototype tool for Java, called
NDETERMIN, and applied NDETERMIN to the set of Java bench-
marks for which we had previously and manually written ND-
Seq specifications [2]. We compared the quality and accuracy of
our automatically-inferred if(*)s to the manually-written NDSeq
specifications.

Our experimental results are summarized in Table 1. The
second-to-last column of Table 1 reports the number of if(*) con-
structs in the inferred NDSeq specification for each benchmark. We
manually confirmed that each of the inferred if(*) annotation was
correct. For many of the benchmarks, NDETERMIN correctly in-
ferred that no if(*) constructs are necessary.

Benchmark
Parallel

Constructs

if(*)’s

in manual

specification

Inferred NDSeq

Specification

if(*)’s Correct?

JGF

sor 1 0 0 yes

matmult 1 0 0 yes

series 1 0 0 yes

crypt 2 0 0 yes

moldyn 4 0 0 yes

lufact 1 0 0 yes

raytracer 1 0 – –

raytracer (fixed) 1 0 0 yes

montecarlo 1 0 0 yes

PJ

pi3 1 0 0 yes

keysearch3 2 0 0 yes

mandelbrot 1 0 0 yes

phylogeny 2 3 – –

phylogeny (fixed) 2 3 1 yes

(non-blocking) stack 1 2 2 yes

(non-blocking) queue 1 2 2 yes

meshrefine 1 2 2 yes

Table 1. Experimental results. All if(*) annotations inferred by
our tool were verified manually to be correct.

For benchmarks stack, queue, and meshrefine, we note that
NDETERMIN finds specifications slightly smaller than the manual
ones. Further, for benchmark phylogeny (fixed), while the previ-
ous manual NDSeq specification included three if(*) constructs,
NDETERMIN correctly infers that only one of these three is actually
necessary. The extra if(*)’s appear to have been manually added
to address some possible parallel conflicts that, in fact, can never be
involved in a non-serializable execution. Finally, our inference al-
gorithm can detect parallel behaviors that no possible NDSeq spec-
ification would allow, which often contain parallelism bugs. In fact,
as indicated by “–” in Table 1, NDETERMIN correctly refuses to in-
fer NDSeq specifications for the buggy versions of raytracer and
phylogeny (containing atomicity errors due to insufficient syn-
chronization), since no solution to the MinCostSAT instance exists;
NDETERMIN does infer correct NDSeq specifications for the cor-
rect (fixed) versions of these benchmarks. (For a more elaborate
discussion of our experimental results, see our technical report [1].)

These experimental results provide promising preliminary evi-
dence for our claim that NDETERMIN can automatically infer if(*)
necessary for the NDSeq specification of parallel correctness for
real parallel Java programs. We believe adding nondeterministic
if(*) constructs is the most difficult piece of writing a NDSeq
specification, and thus our inference technique can make using ND-
Seq specifications much easier. Further, such specification infer-
ence may allow for fully-automated testing and verification to use
NDSeq specifications to separately address parallel and functional
correctness.

Acknowledgments

This research supported in part by Microsoft (Award #024263) and
Intel (Award #024894) funding and by matching funding by U.C.
Discovery (Award #DIG07-10227), by NSF Grants CCF-101781,
CCF-0747390, CCF-1018729, and CCF-1018730, and by a DoD
NDSEG Graduate Fellowship. The last author is supported in
part by a Sloan Foundation Fellowship. Additional support comes
from Oracle (formerly Sun Microsystems), from a gift from In-
tel, and from Par Lab affiliates National Instruments, NEC, Nokia,
NVIDIA, and Samsung.

References

[1] J. Burnim, T. Elmas, G. Necula, and K. Sen. NDetermin: Inferring
nondeterministic sequential specifications for parallelism correctness.
Technical Report UCB/EECS-2011-143, EECS Department, University
of California, Berkeley, Dec 2011.

[2] J. Burnim, T. Elmas, G. Necula, and K. Sen. NDSeq: Runtime checking
for nondeterministic sequential specifications of parallel correctness. In
Programming Language Design and Implementation (PLDI), 2011.

330

