
CONCURRIT: Testing Concurrent Programs with
Programmable State-Space Exploration

Jacob Burnim Tayfun Elmas George Necula Koushik Sen
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

{jburnim,elmas,necula,ksen}@cs.berkeley.edu

Abstract
Testing is the most widely-used methodology for soft-
ware validation. However, due to the nondeterministic
interleavings of threads, traditional testing for concur-
rent programs is not as effective as for sequential pro-
grams. To attack the nondeterminism problem, software
model checking techniques have been used to system-
atically enumerate all possible thread schedules of a
test program. But such systematic and exhaustive explo-
ration is typically too time-consuming for many test pro-
grams. We believe that the programmer’s help to guide
the model checker towards interesting executions is crit-
ical to circumvent this problem.

We propose a testing technique and a supporting tool
called CONCURRIT, which provides a model checker
that can be guided programmatically within test code.
While writing a test, the programmer specifies a partic-
ular thread interleaving scenario in mind using an em-
bedded domain-specific language (DSL), and CONCUR-
RIT explores all and only the executions realizing the
intended scenario. During the exploration, the program-
mer is also able to observe the execution (e.g., assert in-
variants) and constrain the future decisions of the model
checker, all within the test code. We believe that provid-
ing the programmer the ability to observe and control
the exploration of executions will lead to more effective
and efficient testing for concurrent programs.

1. Introduction
Testing is the most widely-used methodology for soft-
ware validation. Concurrency brings new challenges to
software testing. The biggest challenge is the nondeter-
minism in the scheduling of concurrently running com-
putations, i.e., threads. The output of a concurrent pro-
gram can be highly sensitive to timings of the interac-
tions and interference between threads. The same test
program can result in a large number of nondeterminis-
tic executions producing different outcomes. This makes
concurrency-related defects notoriously difficult to de-
tect and reproduce. As a result, testing has not been ap-

plied on concurrent programs as effectively in practice
as it has on sequential programs.

We believe that to address this problem, it is critical
for testing to provide the programmer techniques and
tools (i) to conveniently express interesting executions
of a test program with respect to a particular thread
interleaving scenario in mind and (ii) to examine these
executions systematically and efficiently. We observe a
spectrum of approaches to this, as described next.

1.1 Background
At one end of the spectrum, there are manual ap-
proaches. In the extreme case, a multithreaded test pro-
gram is run under a completely nondeterministic sched-
uler. There is no guarantee about whether the result-
ing execution will be of any interest (e.g., with suffi-
cient degree of interaction between threads) to the pro-
grammer and whether re-running the test will produce
the same or different executions. To control the non-
determinism, the programmer implements a synchro-
nization/communication mechanism (e.g., inserts sleep
statements throughout the code) to restrict the possi-
ble schedules of threads towards a particular scenario.
However, such mechanisms are not portable and reli-
able in general and may require nontrivial modifications
in the program text. Techniques have been proposed
to guide the execution to intended thread schedules in
more portable and reliable ways, where the intended
schedules are specified by the programmer relative to
a global timer (ConAn [16], MultithreadedTC [21]) or a
sequence of user-defined events expressed in linear tem-
poral logic (IMUnit [10]). While these techniques give
the programmer the ability to impose constraints on the
interleaving of threads, they do not support systematic
exploration of all executions satisfying these constraints.

At the other end of the spectrum, there are fully au-
tomated approaches. To alleviate the nondeterminism
in the execution, software model checking techniques
have been combined with testing to control the thread
scheduler so that distinct interleavings of the threads
in the test are systematically enumerated and checked

against the test criteria [14, 19, 20]. Many model check-
ing exploration techniques have been developed that
seek to achieve high coverage of executions in a scal-
able way [12]—such as partial-order reduction [7, 8],
symmetry reduction [9], thread-modular reasoning [6],
and preemption bounding [19]. These techniques do
not directly help to efficiently examine interesting and
potentially-problematic interleaving scenarios. Due to
the state-space explosion problem, examining a particu-
lar scenario involving large components of the program
and identifying a bug may require to wait for an expen-
sive (in time and resources) model checking process.

Recent studies proposed techniques to control the
scheduling of a model checker to target suspicious ex-
ecutions more quickly than traditional state-space ex-
ploration. Among them, active testing [22], probabilistic
scheduling [2], and change-aware preemption prioriti-
zation [11] are fully automated and rely on heuristics.
However, we believe that programmers help to guide
the exploration of executions is also valuable, and test-
ing tools should be designed to allow the programmer to
interact with the test runtime to express her intents and
insights about the test scenario. In fact, work on preemp-
tion sealing [1] proposed to disable preemptions that the
programmer thinks are not interesting or can cause false
warnings. In our work, we would like to give more con-
trol and flexibility to the programmer in this direction.

1.2 Our Approach
We propose a modeling and implementation of a testing
technique and supporting tool (CONCURRIT) that com-
bines testing and software model checking in a novel
way. Our main goal is to make the model checking more
accessible and controllable to the programmer. In par-
ticular, we provide a domain-specific language (DSL)
embedded in a host language (in our case C/C++) us-
ing which the programmer can specify at high level how
an execution of the test should develop, indicating con-
straints and nondeterministic choices on thread sched-
ules. For example, a constraint on the schedule may dic-
tate which threads are allowed to be interleaved at which
point of the execution, or at which code location or un-
der what conditions control will pass from a thread to
another. Our DSL provides to the programmer a concise
and convenient way of imposing constrains on thread in-
terleavings programmatically—i.e., within the test code.
In this way, one can describe a test scenario with various
degrees of flexibility in the thread schedule ranging from
fully deterministic to fully nondeterministic. Section 2
gives example test programs written in our DSL. CON-
CURRIT implements a testing framework and a stateless
model checker that, guided by our DSL, enumerates all
possible executions satisfying the scenario constraints.

Our approach also makes the underlying model
checker more accessible to the programmer for imple-
menting and evaluating a custom search strategy within
the test code. While existing model checkers also offer
plug-in mechanisms to customize and extend the search
algorithms, we believe that interacting with the tool di-
rectly from the test code and using a high-level DSL
(rather than a low-level API) is more convenient for pro-
grammers. In this aspect, our work is similar to [15],
which separates a compact and high-level fixed-point
formulation of a model checking algorithm for Boolean
programs from a general-purpose fixed-point solver.

The initial prototype implementation of CON-
CURRIT for C/C++ programs is available online at
http://code.google.com/p/concurrit/.

1.3 Testing Programs in Cooperative Semantics
One of our key insights is that from the perspective of a
programmer, cooperative executions of a program are
relatively much simpler to describe and reason about
than its traditional preemptive executions. Thus, we pro-
pose to test a concurrent program by only examining
its cooperative executions. In this case, code locations
that a thread may yield control to another thread are ex-
plicitly marked, and a thread may not release control
at a different location. In other words, code between
two yield locations are guaranteed to run atomically.
Once the functionality of the program is tested in the
cooperative semantics, there are techniques (e.g., Yi et
al. [23–25]) that can validate the choice of yield points
by checking that the program is cooperative [25] with
these yield points—i.e., when run under a traditional
preemptive scheduler, the program does not exhibit any
extra behavior other than it exhibits when running under
a cooperative scheduler.

Let P refer to the program under test. We propose to
perform the validation of P in the following steps:

S1 The programmer obtains from P a program Pcoop by
annotating P with yield points. (Section 3.1)

S2 The programmer writes multithreaded tests for Pcoop
and runs them in the cooperative semantics. This
paper is mainly about the testing of Pcoop in this step.

S3 The programmer (using [24] or [25]), either (i) shows
that Pcoop is cooperative, or (ii) identifies potential
interference points that are not covered by the exist-
ing yield annotations in Pcoop . If (ii) happens, back
in S1, the programmer adds yield points to cover de-
tected interference and re-runs the tests in S2.

S4 The programmer compiles and deploys the program
in the preemptive semantics by simply ignoring the
yield annotations. In our case, yield annotations are
C macros that translate to no-ops in the release build.

1 // Program code under test (annotated with yield points for testing)
2 producer(Buffer *buff, int product) { }
3 consumer(Buffer *buff) {
4 ...
5 if (buff is empty) { ... yield(‘‘Await’’); ... }
6 ...
7 }
8 --
9 // Test script in our DSL describing all interleavings of four threads

10 test producer consumer 1() {
11 Buffer buff(2); // Create empty bounded buffer of size two

12 // Create producer and consumer threads, but not activate them yet
13 thread t P1 = thread(producer, &buff, 1), P2 = thread(producer, &buff, 2);
14 thread t C1 = thread(consumer, &buff), C2 = thread(consumer, &buff);

15 while(!all ended()); // Loop until both threads terminate
16 transfer(*).until(*); // Run a thread until some yield point
17 assert(...); // Check an invariant on the buffer
18 }
19 assert(buff.size() == 0); // Check a post-condition on the buffer
20 }
21 ---
22 // Test script in our DSL describing intended interleavings of a scenario
23 test producer consumer 2() {

24 ... // Same definitions in lines 11-14 above

25 // T1
26 transfer(C1).until(‘‘Await’’); // Run C1 until yield point labeled ‘‘Await’’

27 // T2
28 with(P1, P2, C2) { // Execute lines 29-31 with only P1, P2 and C2
29 while(!ended(C2)); // Loop until C2 terminates
30 transfer(*).until(*); // Run a thread until some yield point
31 }
32 }
33 assert(buff.size() ă= 1); // Check a condition on the buffer

34 // T3
35 while(!all ended()) { // Loop until all threads terminate
36 transfer(*).until(end); // Run a thread until it terminates
37 }
38 assert(buff.size() == 0); // Check a condition on the buffer
39 }

Figure 1. Example producer-consumer tests.

2. Example: A Producer-Consumer Test
Figure 1 shows two tests for checking a concur-
rent producer-consumer module, which uses a shared,
bounded buffer of integers. We omit the details of the
program under test (shown at the top of the figure), ex-
cept we highlight that the code is annotated with yield
points each with a unique label. The figure shows only
one of these annotations labeled “Await” (line 5), though
others exists so that threads running producer and con-
sumer can interleave with each other. We focus on the
test procedures, we call test scripts, written using our
DSL. In the code, keywords specific to our DSL are
shown underlined. For simplicity of exposition, we use
a conceptual language, whereas in our implementation,
the DSL is embedded in C/C++, and the corresponding
language constructs are provided as C macros that trans-
late to API calls to the CONCURRIT library.

The first test test producer consumer 1 describes a
scenario involving a bounded buffer to hold 2 integers
(line 11), two threads P1, P2 to act as producers to in-

sert 1 and 2 into the buffer (line 13), and two threads
C1, C2 to act as consumers (line 14). Using our DSL,
the programmer specifies that she expects to examine all
possible nondeterministic interleavings of the threads.
The DSL expression all endedpq returns true iff all the
threads (visible in the current scope) have terminated.
The statement transferp˚q.untilp˚q at line 16 instructs
the model checker to run one of the threads P1, P2, C1,
C2 until it reaches some yield point; ˚’s indicate that
both the thread and yield point are chosen nondetermin-
istically. The transfer statement blocks during this exe-
cution. We point out that, in addition to checking a post-
condition of the test (line 19), the programmer can also
insert an assertion at each interleaving point to check a
program invariant (line 17). In this way, the programmer
avoids to add these checks inside the program code un-
der test, and thus, decouples her program from its tests.

The real novelty of our DSL comes into play when
the programmer is interested in a particular set of
interleavings rather than a completely nondeterminis-
tic one. The second test test producer consumer 2 de-
scribes such a situation. Suppose that the programmer
does not want to examine all interleavings of these pro-
ducer and consumer threads, because she suspects that
a concurrency error is likely to occur during a particular
interleaving scenario, and she wants to ensure that the
intended scenario does not trigger any errors. Note that,
looking at all interleavings of the threads (i.e., without
constraining the interleavings) would help the program-
mer check her claim about the error-freedom of that in-
terleaving scenario. However, exploring all interleavings
would be too costly in time. Thus, the programmer in-
tends to check all and only the possible executions of
the scenario in mind, which develops in three steps:

T1 Thread C1 runs first until it detects that the buffer is
empty and starts waiting for the buffer to get full.

T2 Then, both producer threads and consumer thread
C2 run concurrently, until C2 consumes the integer
either P1 or P2 inserts in the buffer and finishes. At
the end of this step, size of the buffer must be ď 1,
since C2 consumes one of the integers produced.

T3 Finally, both producer threads and C1 run sequen-
tially in some arbitrary order. At the end, the buffer
must be empty, since in order to terminate C1 must
consume the remaining integer not consumed by C2.

As shown in Figure 1, our DSL provides a clean, con-
cise, and high-level way describing the scenario above.
First, the DSL constructs help the programmer to con-
strain the nondeterminism in the interleavings of pro-
ducer and consumer threads, so that at each point only
allowed threads can run (using with), and a thread can-
not execute earlier than or beyond a given point (using

until). For example, C1 should run up to a yield point
labeled “Await” at the beginning of the test (line 26),
and then it should not run until C2 ends (line 28-32). (In
fact, one can describe in this style a fully deterministic
interleaving indicating which threads to transfer at each
point and until which yield point.) Second, the DSL con-
structs also allow the programmer to indicate expected
nondeterminism about which thread to choose and until
when that thread must run (using ˚). For example, in T2,
P1, P2, and C2 are interleaved with each other nondeter-
ministically, and in T3, threads are run sequentially until
termination (we use the special label end to refer to the
end of a thread) but in a nondeterministic order. There-
fore, this test script specifies not a single execution but
a set of executions, which our integrated model checker
targets to systematically enumerate. We note that var-
ious model checking techniques, e.g., dynamic partial
order reduction [5], can still be applied in this setting to
make the exploration efficient.

2.1 When a Test Passes or Fails
While testing a sequential program, the common ques-
tion asked by the programmer is: Does the (only) exe-
cution of the test satisfy all the assertions? Having the
ability to search all executions of a concurrent test pro-
gram, we can talk about two questions to answer when
running a test with a model checker. Each question de-
termines when the overall test passes or fails (in other
words, when the model checker finishes the exploration
of executions). A successful execution of the test script
is a “terminating” execution that (i) does not violate an
assertion and (ii) satisfies all the constraints specified by
the programmer. Section 3.2.1 overviews our DSL con-
structs to impose constraints on executions. A failing ex-
ecution is one that violates an assertion. If an assertion
violation is detected, the model checker terminates the
exploration immediately and declares the test failed.

The model checker can be run one of two modes to
answer the following questions, respectively:
Are there any successful executions of the test script?
In this mode, the model checker seeks to find a success-
ful execution. The test passes if the model checker ex-
plores at least one successful execution without detect-
ing any failing execution meanwhile. The test fails oth-
erwise. Notice that, a test in this mode can pass, produc-
ing a successful execution, even though there also exists
a failing execution.
Are there any failing executions of the test script?
In this mode, the model checker enumerates all suc-
cessful executions of the test script. The test fails if the
model checker detects a failing execution during the ex-
ploration and passes otherwise. Differently from the pre-
vious mode, a test in this mode can pass even though
there is no successful execution.

3. Testing Programs with CONCURRIT

3.1 Annotations for Cooperative Execution
Cooperative concurrency builds on the idea of (symmet-
ric) coroutines [4, 13], which generalize subroutines to
allow multiple entry points for suspending and resum-
ing the execution. In CONCURRIT, we model coroutines
for C/C++ using pthreads [18] and cooperation at yield
points using proper synchronization operations. In our
case, the cooperation among threads is performed ex-
plicitly using two kinds of operations: transfer and yield.
The former is used in the test script to pass control to
other threads. The latter is used for a thread (for exam-
ple, P1, P2, C1, C2 in Figure 1) to relinquish the control
back to the test script, and for this, the program’s code
under test needs to be explicitly annotated with yield be-
fore testing, as explained next.

Every yield annotation is given a unique label, us-
ing which the yield location can be referred to in the
test script. Let l range over labels. A yieldplq statement
can be placed anywhere in the code to indicate a lo-
cation at which a thread executing that code in a co-
operative execution may yield control to other threads.
Figure 1 shows an example to this at line 5. The yield
points in general indicate source locations, such as ac-
cesses to shared memory, that are subject to interference
by other threads. Thus, similarly to [23], yield points
can also be annotated as follows: A read from a shared
variable x can be replaced by yield readpl , xq. This ex-
presses that the current thread first yields the execution
to other threads, and when the control is transferred back
to it again, it reads from x and returns the value. A write
to a variable x in the form of x “ e can be replaced by
yield writepl , xq “ e. This is similar to yield read, ex-
cept that the current thread writes the (previously com-
puted) value of e to x after it gains the control back.

In the extreme case, one can treat every shared vari-
able access a potential yield point and imagine a tool
that examines shared variable accesses and automati-
cally inserts yield annotations accordingly. We provide
such a tool (using Pin [17]) that monitors sample exe-
cutions of the test program and marks accesses that in-
volve in a data race as potential yield points. However,
in reality the number of shared variable accesses subject
to harmful interference may be less than all shared ac-
cesses [3, 25]. In this case, the programmer can choose
to add the annotations gradually (for example, by prun-
ing out the yield annotations inserted by a tool) as more
tests pass. In fact, we see the gradual, test-driven addi-
tion of yield annotations as a systematic way of increas-
ing the concurrency of the program.

3.2 Test Scripts: Syntax and Semantics
Figure 2 shows our DSL for writing tests. Note that, for
simplicity we present here a conceptual language rather

f , g P Functions t P ThreadVariables

l ::“ next | end | “label text” Yield labels
e ::“ ended (t) | all ended() | ¨ ¨ ¨ Boolean expressions
t ::“ ˚ | t | t1, ¨ ¨ ¨, tk Thread expressions
u ::“ ˚ | l | e Until expressions
c ::“ except(t) | until(u) | count(k) Transfer clauses
s ::“ t = thread (f, args) Thread creation

| t = transfer (t).c1. . . ck Transfer to a thread
| assert (e) Assertion
| assume (e) Assumption
| with/without (t1, ¨ ¨ ¨, tk) { s } Thread scope
| x “ e | s ; s | if(e) { s } | ¨ ¨ ¨ Standard C/C++ stmts.

Figure 2. Syntax of our DSL, embedded in C/C++, for
writing test scripts. (We do not show yield, as it is not
used in test scripts, but in the program under test.)

(Test&threads)&
(Controller&thread)&

1"

2"

3"

4"

f(args) {
// Program code:
· · ·
yield(l1);
· · ·
yield(l2);
· · ·

}

// Test script:
test func() {

t1 = thread(f, . . .);
t2 = thread(g, . . .);
transfer(t1).until(l1);
assert x == 0;
transfer(⇤).until(⇤);
assume y == 1;
assert x == 1;

}

g(args) {t1

t2
Main

Figure 3. Execution of a test script.

than the actual C/C++ syntax. A test script in this setting
is a function (in a recognizable signature by our testing
framework), whose body is a statement s from Figure 2.
A test script combines our DSL expressions and state-
ments with other, standard expressions and statements
of the host language (in our case, C/C++).

Figure 3 depicts the execution of a test. The test is
executed by a set of threads: tMain, t1, ..., tnu whose
interleavings are controlled by a model checker. Main
refers to the special controller thread running the test
script written in our DSL. In Figure 1 the body of
test producer consumer 1/2 are executed by Main . Ev-
ery execution of the test starts with Main being the only
thread. Other threads (t1, ..., tn), we call test threads, are
created by Main within the script using the thread op-
eration; each test thread executes a given function call
concurrently (and cooperatively) with Main and other
test threads. In Figure 1 threads P1, P2, C1, C2 are test
threads and created at lines 13-14. Creating a thread
does not activate the new thread; the thread is activated
later by a transfer statement as described next.

At any time during the execution, either Main or
one of t1, ..., tn is allowed to run, and that thread does

not pass the control to another thread until it reaches a
transfer or yield.

• Control passes from the Main thread to a test thread
ti by a transfer operation in the test script. (Arrows
1, 3 in Figure 3) As only one thread is active at any
time, Main then gets into a waiting state.
• Control passes from a test thread ti to the Main

thread by a yield operation. (Arrows 2, 4 in Fig-
ure 3) Not every yield call is granted (taken) (see Sec-
tion 3.2.1), but whenever it is, control is always given
to Main .

When Main becomes active, it can check some con-
dition on the current state using assert or assume (see
below), perform local computation and update some
(possibly global) variables, and/or can transfer control
to another test thread. An execution of the test ends
when the test script finishes. The model checker may
then backtrack and start a new execution of the script.

We point out that the test script may describe an
unrealizable interleaving. For example, a thread may
block (on a synchronization operation) between two
yield point, preventing Main from taking the control
back. To detect and avoid such cases, we set a time limit
for each thread to execute between two yield points. If
this time expires, the model checker stops the current
execution and backtracks for a distinct execution.

3.2.1 DSL Constructs to Constrain Test Executions

Assert and assume. Given a boolean expression on the
current state (global variables plus the locals of Main)
we distinguish two ways to reason about a condition on
the current program state: assert e and assume e. Both
statements do not have any side effects if e holds (i.e.,
evaluates to true), but they differ when e does not hold.

If e does not hold, assert e causes the test to fail
immediately, as usual. On the other hand, assume e
in this case does not terminate the entire test. Instead,
the model checker discards the currently explored ex-
ecution, backtracks, and restarts with a distinct thread
schedule. Thus, we use assumptions to impose a “soft”
constraint on the executions to be explored by the model
checker, especially when expressing at which conditions
an interleaving is expected to happen is more convenient
than referring to a particular yield label in the program.
Nondeterministic transfers. While a test thread always
yields to Main , the target of a transfer from Main can
be decided statically or at runtime. In the simplest case,
transferptiq passes the control to thread ti. The pro-
grammer can also leave the (nondeterministic) decision
about which thread to run to the model checker using
transferpt1, ..., tkq or transferp˚q. In the former case one
of t1, ..., tk and in the latter case any thread in the cur-

rent scope (see below) is chosen.1 The chosen target
thread is returned by transfer for the script’s observa-
tion when control is given back to Main . An except
clause can be attached to transferp˚q to prevent a thread
or threads from being scheduled at that transfer point
(e.g., transferp˚q.exceptpt2q).
Transfer clauses. When transferring to a test thread, the
programmer can also choose at which yield point the
target thread should yield the control back to Main . For
this, transfer statements are augmented with count and
until clauses, which specify the required conditions for
the target thread to yield. By default, each transfer is
augmented with untilp˚q and countp1q clauses, indicat-
ing that the target thread can relinquish the execution at
any point.1 Given a label l , untilplq.countpkq indicates
that the target thread should yield at the kth visit of a
yield point labeled with l but no earlier. We also de-
fine special labels next and end for convenience to refer
to the next reached yield label and the end of the target
thread. For example, transferptq.untilpendq transfers to
t and executes it until t terminates. Finally, the program-
mer can also specify a boolean expression in untilpeq to
indicate that the target thread should yield only when
e evaluates to true. Given that, transferp¨ ¨ ¨ q.untilpeq is
equivalent to transferp¨ ¨ ¨ q; assumepeq.
Thread scopes. Our DSL allows the programmer to
define a temporary thread scope in which the model
checker works with only a subset of threads vis-
ible in the current C scope. For this, we provide
withpt1, ¨ ¨ ¨, tkq and withoutpt1, ¨ ¨ ¨, tkq statements. The
former defines a thread scope in which only threads
t1, ¨ ¨ ¨, tk are used in any scheduling decision while ex-
ecuting the given statement (referring to another thread
causes an error). In Figure 1, we use with to constrain
part of the execution to threads P1, P2 and C2 (line 28).
The latter also defines a thread scope but in a dual way;
it temporarily removes t1, ¨ ¨ ¨, tk from the current scope.

4. Conclusion
We propose a modeling and implementation of a testing
technique and supporting tool (CONCURRIT) combining
testing and software model checking in a novel way. Our
technique provides a domain-specific language (DSL)
embedded in a host language (in our case C/C++). The
programmer, using this DSL, can specify at high level
how an execution of the test should develop; s/he can ex-
plicitly indicate constraints on thread schedules. In this
way, the programmer can control the degree freedom in
nondeterministic choices a model checker would make
during the state-space exploration. We believe that our
technique will make the model checking more accessi-

1 The nondeterministic decision may be biased by the model checker’s
search algorithm, e.g., the partial-order reduction [7] being used.

ble and controllable to the programmer, and thus, will
lead to a more effective use of the state-space explo-
ration in various kinds of testing practices from unit test-
ing to system testing.

References
[1] Thomas Ball, Sebastian Burckhardt, Katherine Coons,

Madanlal Musuvathi, , and Shaz Qadeer. Preemption
sealing for efficient concurrency testing. Technical Re-
port MSR-TR-2009-143, Microsoft Research, 2009.

[2] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musu-
vathi, and Santosh Nagarakatte. A randomized scheduler
with probabilistic guarantees of finding bugs. In Pro-
ceedings of the fifteenth edition of ASPLOS on Architec-
tural support for programming languages and operating
systems, ASPLOS ’10, pages 167–178, New York, NY,
USA, 2010. ACM.

[3] Jacob Burnim, Tayfun Elmas, George Necula, and
Koushik Sen. NDSeq: Runtime checking for nondeter-
ministic sequential specifications of parallel correctness.
In Programming Language Design and Implementation
(PLDI), 2011.

[4] Melvin E. Conway. Design of a separable transition-
diagram compiler. Commun. ACM, 6:396–408, July
1963.

[5] Cormac Flanagan and Patrice Godefroid. Dynamic
partial-order reduction for model checking software. In
POPL ’05: Proc. of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 110–121, New York, NY, USA, 2005. ACM Press.

[6] Cormac Flanagan and Shaz Qadeer. Thread-modular
model checking. In Proceedings of the 10th international
conference on Model checking software, SPIN’03, pages
213–224, Berlin, Heidelberg, 2003. Springer-Verlag.

[7] Patrice Godefroid. Partial-order methods for the verifi-
cation of concurrent systems: an approach to the state-
explosion problem, volume 1032. Springer-Verlag Inc.,
New York, NY, USA, 1996.

[8] Guy Gueta, Cormac Flanagan, Eran Yahav, and Mooly
Sagiv. Cartesian partial-order reduction. In Proceed-
ings of the 14th international SPIN conference on Model
checking software, pages 95–112, Berlin, Heidelberg,
2007. Springer-Verlag.

[9] Radu Iosif. Symmetry reduction criteria for software
model checking. In Proc. of the 9th International SPIN
Workshop on Model Checking of Software, pages 22–41,
London, UK, 2002. Springer-Verlag.

[10] Vilas Jagannath, Milos Gligoric, Dongyun Jin, Qingzhou
Luo, Grigore Rosu, and Darko Marinov. Improved mul-
tithreaded unit testing. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, ESEC/FSE ’11,
pages 223–233, New York, NY, USA, 2011. ACM.

[11] Vilas Jagannath, Qingzhou Luo, and Darko Marinov.
Change-aware preemption prioritization. In Proceedings
of the 2011 International Symposium on Software Testing

and Analysis, ISSTA ’11, pages 133–143, New York, NY,
USA, 2011. ACM.

[12] Ranjit Jhala and Rupak Majumdar. Software model
checking. ACM Comput. Surv., 41:21:1–21:54, October
2009.

[13] Gilles Kahn and David B. Macqueen. Coroutines and
Networks of Parallel Processes. In Information Process-
ing 77, pages 993–998. North Holland Publishing Com-
pany, 1977.

[14] Moonzoo Kim, Yunho Kim, and Hotae Kim. A com-
parative study of software model checkers as unit testing
tools: An industrial case study. IEEE Trans. Softw. Eng.,
37:146–160, March 2011.

[15] Salvatore La Torre, Madhusudan Parthasarathy, and Gen-
naro Parlato. Analyzing recursive programs using a
fixed-point calculus. In Proceedings of the 2009 ACM
SIGPLAN conference on Programming language design
and implementation, PLDI ’09, pages 211–222, New
York, NY, USA, 2009. ACM.

[16] Brad Long, Daniel Hoffman, and Paul Strooper. Tool
support for testing concurrent java components. IEEE
Trans. Softw. Eng., 29:555–566, June 2003.

[17] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instru-
mentation. In Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and imple-
mentation, PLDI ’05, pages 190–200, New York, NY,
USA, 2005. ACM.

[18] F. Mueller. Pthreads library interface, 1993.

[19] Madanlal Musuvathi and Shaz Qadeer. Iterative con-
text bounding for systematic testing of multithreaded pro-

grams. In Proceedings of the 2007 ACM SIGPLAN con-
ference on Programming language design and implemen-
tation, PLDI ’07, pages 446–455, New York, NY, USA,
2007. ACM.

[20] V. Mutilin. Concurrent testing of java components using
java pathfinder. In Leveraging Applications of Formal
Methods, Verification and Validation, 2006. ISoLA 2006.
Second International Symposium on, pages 53 –59, nov.
2006.

[21] William Pugh and Nathaniel Ayewah. Unit testing con-
current software. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated soft-
ware engineering, ASE ’07, pages 513–516, New York,
NY, USA, 2007. ACM.

[22] Koushik Sen. Race directed random testing of concurrent
programs. In Proceedings of the 2008 ACM SIGPLAN
conference on Programming language design and imple-
mentation, PLDI ’08, pages 11–21, New York, NY, USA,
2008. ACM.

[23] Jaeheon Yi, Tim Disney, Stephen N. Freund, and Cormac
Flanagan. Types for precise thread interference. Tech-
nical Report UCSC-SOE-11-22, University of California
at Santa Cruz, 2011.

[24] Jaeheon Yi and Cormac Flanagan. Effects for cooperable
and serializable threads. In Proceedings of the 5th ACM
SIGPLAN workshop on Types in language design and
implementation, TLDI ’10, pages 3–14, New York, NY,
USA, 2010. ACM.

[25] Jaeheon Yi, Caitlin Sadowski, and Cormac Flanagan. Co-
operative reasoning for preemptive execution. In Pro-
ceedings of the 16th ACM symposium on Principles
and practice of parallel programming, PPoPP ’11, pages
147–156, New York, NY, USA, 2011. ACM.

