
P A R A L L E L C O M P U T I N G L A B O R A T O R Y

EECS
Electrical Engineering and

Computer Sciences Berkeley Parlab

CONCURRIT:	 Tes&ng	 Concurrent	 Programs	
with	 Programmable	 State-‐Space	 Explora&on	

(A	 DSL	 for	 Wri&ng	 Concurrent	 Tests)	

Jacob Burnim, Tayfun Elmas*!
George Necula, Koushik Sen!

University of California, Berkeley!

HotPar 2012!

•  Consider:	
– Mozilla	 SpiderMonkey	 JavaScript	 Engine	

• Used	 in	 Firefox	 browser	
•  121K	 lines	 of	 code	

– Want	 to	 test	 JS_NewContext,	 JS_DestroyContext!
• Contain	 2K	 <	 lines	 of	 code	

2	

How	 to	 write	 an	 xUnit-‐like	 test	 for	 a	
concurrent	 program?	

•  Fix	 inputs	 è	 Determinis&c	 test	
–  If	 there	 is	 a	 bug,	 every	 run	 manifests	 it!	

3	

How	 to	 write	 an	 xUnit-‐like	 test	 for	 a	
sequen&al	 program?	

// check if any assertion fails!
test_Context() { !
 ...!
 JSContext *cx = JS_NewContext(rt, 0x1000);!
 if (cx) {!
 ...!
 JS_DestroyContext(cx);!
 }!
}!

•  Nondeterminism	 due	 to	 thread	 schedules	
– Hard	 to	 specify	 and	 control	 schedule!	

	

4	

How	 to	 write	 an	 xUnit-‐like	 test	 for	 a	
concurrent	 program?	

// check if any assertion fails!
test_Context() {!
 !
 ... // create 10 threads to run testfunc!
 !
}!
!
testfunc() {!
 JSContext *cx = JS_NewContext(rt, 0x1000);!
 if (cx) {!
 ...!
 JS_DestroyContext(cx);!
 }!
}!

1.   Stress	 tesEng:	 No	 control	 over	 thread	 schedules	
è	 No	 guarantee	 about	 generated	 schedules	

5	

Approaches	 to	 tesEng	 concurrent	 programs	

// check if any assertion fails!
test_Context() {!
 Loop 1000 times {!
 ... // create 100 threads to run testfunc!
 }!
}!
!
testfunc() {!
 JSContext *cx = JS_NewContext(rt, 0x1000);!
 if (cx) {!
 ...!
 JS_DestroyContext(cx);!
 }!
}!

1.   Stress	 tesEng:	 No	 control	 over	 thread	 schedules	
è	 No	 guarantee	 about	 generated	 schedules	

2.   Model	 checking:	 Enumerate	 all	 possible	 schedules	
–  Too	 many	 schedules	 	

è	 Not	 scalable	 for	 large	 programs!	

6	

Approaches	 to	 tesEng	 concurrent	 programs	

Missing:	 Programmer	 has	 no	 direct	 control	
on	 thread	 schedule	
•  Key	 to	 effec&ve	 and	 efficient	 tes&ng	

7	

Programmers	 have	 oQen	 insights/ideas	
about	 which	 schedules	 to	 look	 at	

DO	 NOT	 READ!	

8	

Programmers	 have	 oQen	 insights/ideas	
about	 which	 schedules	 to	 look	 at	

6/4/12 Bug 476934 – JS_GC can dereference a NULL pointer (in a multi-‐‑threaded app using JS_ClearCon…

2/13localhost/Users/telmas/Repository/Research/ParLab/Benchmarks/C-‐‑CPP/…/bug-‐‑476934

JS_BeginRequest are called; when they're returned JS_EndRequest and
JS_ClearContextThread are called.

The crashes consistently occurs inside js_GC in the following code block:

 while ((acx = js_ContextIterator(rt, JS_FALSE, &iter)) != NULL) {
 if (!acx->thread || acx->thread == cx->thread)
 continue;
 memset(acx->thread->gcFreeLists, 0, sizeof acx->thread->gcFreeLists);
 GSN_CACHE_CLEAR(&acx->thread->gsnCache);
 }

acx always appears to be valid but acx->thread == NULL when the application
crashes (which may be in the memset or GSN_CACHE_CLEAR line). This shouldn't
occur as these lines should be skipped if (!acx->thread)..

What I suspect is happening is that one thread is calling JS_GC while a second
is calling JS_EndRequest and JS_ClearContextThread (in returning a context to
the pool). The call to JS_GC will block until JS_EndRequest finishes.. JS_GC
then resumes.. but while JS_GC is running JS_ClearContextThread also runs (no
locking is done in this?), modifying the value of acx->thread as the code above
runs. acx->thread becomes NULL just before it gets dereferenced and the
application exits.

Reproducible: Always

Steps to Reproduce:
I've tried to put together the smallest bit of code to replicate the problem
(and hope I haven't missed anything trimming it down). main() sets up an
environment pretty much following the example in the User Guide then sits
endlessly calling JS_GC. Before the loop it spawns one or more threads that
create a new JSContext each and sit in their own loops beginning and ending
requests for those contexts.

If the child threads just call:
 JS_BeginRequest
 JS_EndRequest
then the program runs and runs without any problems, as expected.

If the child threads call:
 JS_SetContextThread
 JS_BeginRequest
 JS_EndRequest
 JS_ClearContextThread
then the program crashes after a few seconds for me.

If the child threads call:
 JS_SetContextThread
 JS_ClearContextThread
the crashes happen almost instantly.

8<----

#include <pthread.h>
#include <stdlib.h>

#define XP_UNIX
#define JS_THREADSAFE
#include "jsapi.h"

#define THREADS 1

static JSClass global_class = {
 "global", JSCLASS_GLOBAL_FLAGS,
 JS_PropertyStub, JS_PropertyStub, JS_PropertyStub, JS_PropertyStub,
 JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, JS_FinalizeStub,
 JSCLASS_NO_OPTIONAL_MEMBERS

6/4/12 Bug 476934 – JS_GC can dereference a NULL pointer (in a multi-‐‑threaded app using JS_ClearCon…

1/13localhost/Users/telmas/Repository/Research/ParLab/Benchmarks/C-‐‑CPP/…/bug-‐‑476934

/DVW�&RPPHQW

Save Changes

EFODU\#EFODU\�FRP
EHQW�PR]LOOD#JPDLO�FRP
EUHQGDQ#PR]LOOD�RUJ
KLJKPLQG��#JPDLO�FRP
LJRU#PLU��RUJ
MRUHQGRUII#PR]LOOD�FRP
0LNH0#5HWHN6ROXWLRQV�FRP
VDPXHO�VLGOHU�ROG#JPDLO�FRP
VD\UHU#JPDLO�FRP

6KRZ�2EVROHWH�����9LHZ�$OO

>UHSO\@�>�@�>UHSO\@�>�@'HVFULSWLRQ

)LUVW�/DVW�3UHY�1H[W����1R�VHDUFK�UHVXOWV�DYDLODEOH

%XJ����������-6B*&�FDQ�GHUHIHUHQFH�D�18//�SRLQWHU��LQ�D�PXOWL�
WKUHDGHG�DSS�XVLQJ�-6B&OHDU&RQWH[W7KUHDG�

6WDWXV� 5(62/9('�),;('
:KLWHERDUG� IL[HG�LQ�WUDFHPRQNH\
.H\ZRUGV� IL[HG����������IL[HG�����

3URGXFW� &RUH
&RPSRQHQW� -DYD6FULSW�(QJLQH
9HUVLRQ� XQVSHFLILHG
3ODWIRUP� [���/LQX[

,PSRUWDQFH� ���QRUPDO��YRWH�
7DUJHW�0LOHVWRQH� ���
$VVLJQHG�7R� ,JRU�%XNDQRY
4$�&RQWDFW� JHQHUDO#VSLGHUPRQNH\�EXJV

85/�

'HSHQGV�RQ�
%ORFNV� MV���VUF��������������

� 6KRZ�GHSHQGHQF\�WUHH
��JUDSK

�

5HSRUWHG� �����������������367�E\
SDXO�EDUQHWWD#VP[�FR�Q]

0RGLILHG� �����������������3'7��+LVWRU\�

&&�/LVW� �$GG�PH�WR�&&�OLVW�
��XVHUV��HGLW�

)ODJV�

VD\UHU� EORFNLQJ����� +

� ZDQWHG‑IHQQHF���

EFODU\� LQ‑WHVWVXLWH -‐‑

EFODU\� LQ‑OLWPXV -‐‑

6HH�$OVR�

EORFNLQJ�
IHQQHF�

���

EORFNLQJ���� ���

VWDWXV���� ���

EORFNLQJ������ ���

VWDWXV������ ���

EORFNLQJ������ ���

VWDWXV������ ���

$WWDFKPHQWV

EDFNSRUW�WR�������Y���������.%��SDWFK��
�����������������3'7��,JRU�%XNDQRY

VDPXHO�VLGOHU�ROG��DSSURYDO���������� 'HWDLOV�_�'LII

$GG�DQ�DWWDFKPHQW��SURSRVHG�SDWFK��WHVWFDVH��HWF��

SDXO�EDUQHWWD#VP[�FR�Q]� ��������������������367

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.5)
Gecko/2009010509 Gentoo Firefox/3.0.5
Build Identifier: SpiderMonkey 1.7.0

See
http://groups.google.com/group/mozilla.dev.tech.js-
engine/browse_thread/thread/b1bf3460297f01e3
for the initial discussion about this.

I have a multi-threaded application that periodically crashes. I maintain a
pool of JSContexts: as they're requested from the pool JS_SetContextThread and
JS_BeginRequest are called; when they're returned JS_EndRequest and

&ROODSVH
$OO
&RPPHQWV
([SDQG�$OO
&RPPHQWV

6/4/12 Bug 476934 – JS_GC can dereference a NULL pointer (in a multi-‐‑threaded app using JS_ClearCon…

1/13localhost/Users/telmas/Repository/Research/ParLab/Benchmarks/C-‐‑CPP/…/bug-‐‑476934

/DVW�&RPPHQW

Save Changes

EFODU\#EFODU\�FRP
EHQW�PR]LOOD#JPDLO�FRP
EUHQGDQ#PR]LOOD�RUJ
KLJKPLQG��#JPDLO�FRP
LJRU#PLU��RUJ
MRUHQGRUII#PR]LOOD�FRP
0LNH0#5HWHN6ROXWLRQV�FRP
VDPXHO�VLGOHU�ROG#JPDLO�FRP
VD\UHU#JPDLO�FRP

6KRZ�2EVROHWH�����9LHZ�$OO

>UHSO\@�>�@�>UHSO\@�>�@'HVFULSWLRQ

)LUVW�/DVW�3UHY�1H[W����1R�VHDUFK�UHVXOWV�DYDLODEOH

%XJ����������-6B*&�FDQ�GHUHIHUHQFH�D�18//�SRLQWHU��LQ�D�PXOWL�
WKUHDGHG�DSS�XVLQJ�-6B&OHDU&RQWH[W7KUHDG�

6WDWXV� 5(62/9('�),;('
:KLWHERDUG� IL[HG�LQ�WUDFHPRQNH\
.H\ZRUGV� IL[HG����������IL[HG�����

3URGXFW� &RUH
&RPSRQHQW� -DYD6FULSW�(QJLQH
9HUVLRQ� XQVSHFLILHG
3ODWIRUP� [���/LQX[

,PSRUWDQFH� ���QRUPDO��YRWH�
7DUJHW�0LOHVWRQH� ���
$VVLJQHG�7R� ,JRU�%XNDQRY
4$�&RQWDFW� JHQHUDO#VSLGHUPRQNH\�EXJV

85/�

'HSHQGV�RQ�
%ORFNV� MV���VUF��������������

� 6KRZ�GHSHQGHQF\�WUHH
��JUDSK

�

5HSRUWHG� �����������������367�E\
SDXO�EDUQHWWD#VP[�FR�Q]

0RGLILHG� �����������������3'7��+LVWRU\�

&&�/LVW� �$GG�PH�WR�&&�OLVW�
��XVHUV��HGLW�

)ODJV�

VD\UHU� EORFNLQJ����� +

� ZDQWHG‑IHQQHF���

EFODU\� LQ‑WHVWVXLWH -‐‑

EFODU\� LQ‑OLWPXV -‐‑

6HH�$OVR�

EORFNLQJ�
IHQQHF�

���

EORFNLQJ���� ���

VWDWXV���� ���

EORFNLQJ������ ���

VWDWXV������ ���

EORFNLQJ������ ���

VWDWXV������ ���

$WWDFKPHQWV

EDFNSRUW�WR�������Y���������.%��SDWFK��
�����������������3'7��,JRU�%XNDQRY

VDPXHO�VLGOHU�ROG��DSSURYDO���������� 'HWDLOV�_�'LII

$GG�DQ�DWWDFKPHQW��SURSRVHG�SDWFK��WHVWFDVH��HWF��

SDXO�EDUQHWWD#VP[�FR�Q]� ��������������������367

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.5)
Gecko/2009010509 Gentoo Firefox/3.0.5
Build Identifier: SpiderMonkey 1.7.0

See
http://groups.google.com/group/mozilla.dev.tech.js-
engine/browse_thread/thread/b1bf3460297f01e3
for the initial discussion about this.

I have a multi-threaded application that periodically crashes. I maintain a
pool of JSContexts: as they're requested from the pool JS_SetContextThread and
JS_BeginRequest are called; when they're returned JS_EndRequest and

&ROODSVH
$OO
&RPPHQWV
([SDQG�$OO
&RPPHQWV

DO	 NOT	 READ!	

9	

Programmers	 have	 oQen	 insights/ideas	
about	 which	 schedules	 to	 look	 at	

[reply] [-] [reply] [-]Comment 5

[reply] [-] [reply] [-]Comment 6

"../jsgc.cpp", ln=2682) at ../jsutil.cpp:68
#1 0x00299e26 in JS_CallTracer (trc=0xb0bace84, thing=0x39088, kind=2) at
../jsgc.cpp:2682
#2 0x00264aca in js_pinned_atom_tracer (table=0x34be4, hdr=0x80fe00, number=0,
arg=0xb0bace84) at ../jsatom.cpp:551
#3 0x00274548 in JS_DHashTableEnumerate (table=0x34be4, etor=0x264a12
<js_pinned_atom_tracer>, arg=0xb0bace84) at ../jsdhash.cpp:742
#4 0x00264b52 in js_TraceAtomState (trc=0xb0bace84, allAtoms=0) at
../jsatom.cpp:566
#5 0x0029ba23 in js_TraceRuntime (trc=0xb0bace84, allAtoms=0) at
../jsgc.cpp:3147
#6 0x0029c259 in js_GC (cx=0x50e6c0, gckind=GC_NORMAL) at ../jsgc.cpp:3562
#7 0x00266e77 in js_DestroyContext (cx=0x50e6c0, mode=JSDCM_FORCE_GC) at
../jscntxt.cpp:541
#8 0x002506db in JS_DestroyContext (cx=0x50e6c0) at ../jsapi.cpp:1089
#9 0x00001eb2 in testfunc (ignored=0x0) at
/Users/jason/dev/moz/spidermonkey-1.8/testapp.cpp:16
#10 0x9169b6f5 in _pthread_start ()
#11 0x9169b5b2 in thread_start ()

Igor Bukanov 2009-03-09 17:47:12 PDT

At least one problem that I can see from the code is that js_GC does the check:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
 return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Igor Bukanov 2009-03-10 07:55:37 PDT

With the test program on 64-bit Linux I could not reproduce the bug from the
comment 4 but I do see assert from the comment 0 after bumping the number of
threads to 1000. The assert is indeed rare, about 2-3% of all runs and I could
not reproduce it under GDB. On the other hand, good old printfs have shown what
was going on. The problem comes from the following code in js_NewContext:

 JS_LOCK_GC(rt);
 for (;;) {
 first = (rt->contextList.next == &rt->contextList);
 if (rt->state == JSRTS_UP) {
 JS_ASSERT(!first);

 /* Ensure that it is safe to update rt->contextList below. */
 js_WaitForGC(rt);
 break;
 }
...
 JS_WAIT_CONDVAR(rt->stateChange, JS_NO_TIMEOUT);
 }
 JS_APPEND_LINK(&cx->link, &rt->contextList);

DO	 NOT	 READ!	

Fixed,	 known	 schedule	 for	 threads	 A	 and	 B	

Unknown	 schedule	 for	 A	 and	 C	

10	

InserEng	 sleeps	 to	 enforce	 a	 schedule	

DO	 NOT	 READ!	

Sleeps:	 	
•  Lightweight	 and	 convenient	 tool	 for	 programmer	
•  BUT:	 Ad	 hoc,	 not	 reliable	 for	 long,	 complex	 schedules.	
	

	 Need:	 Formal	 and	 robust	 way	 to	 describe	 schedules!	

Build Identifier: Current tip

I have a multi-threaded application that periodically crashes, giving the
following assertion error:

$./a.out
Assertion failure: rt->state == JSRTS_UP || rt->state == JSRTS_LAUNCHING, at
jscntxt.cpp:465

I've attached a test program which demonstrates this (see below). The program
spawns many threads, each of which create and then destroy a context before
exiting. I'd expect the number of contexts active at any time to range between
[0..THREADS], possibly transitioning between 0 and non-zero values many times
and showing a race condition in the code?

Reproducible: Always

Steps to Reproduce:
Below is a simple application that exhibits the problem 90+% of the time (for
me) when run directly from the command line:

8<----

#include <stdlib.h>
#include <pthread.h>

#include "jsapi.h"

static JSRuntime *rt;

#define THREADS 100

static void * testfunc(void *ignored) {

 JSContext *cx = JS_NewContext(rt, 0x1000);
 if (cx) {
 JS_BeginRequest(cx);
 JS_DestroyContext(cx);
 }

 return NULL;
}

int main(void) {

 rt = JS_NewRuntime(0x100000);
 if (rt == NULL)
 return 1;

 /* Uncommenting this to guarantee there's always at least
 * one context in the runtime prevents this problem. */
// JSContext *cx = JS_NewContext(rt, 0x1000);

 int i;
 pthread_t thread[THREADS];
 for (i = 0; i < THREADS; i++) {
 pthread_create(&thread[i], NULL, testfunc, NULL);
 }

 for (i = 0; i < THREADS; i++) {
 pthread_join(thread[i], NULL);
 }

 return 0;
}

8<----

It seems to be very sensitive to timings as I have trouble reproducing the
issue in gdb. For me to trigger it there I just need create/destroy more
contexts per thread, but YMMV.

8<----

•  In	 RADBench	 [Jalbert,	 Sen,	 HotPar’10]	

11	

Case	 study:	 A	 bug	 in	 SpiderMonkey	 (1.8rc1)	

5/14/12 2:56 PMBug 478336 – rt->state assertion failure in js_DestroyContext creating/destroying many contexts

Page 2 of 12file:///Users/elmas/Repository/Research/ParLab/Benchmarks/C-CPP/R…CH/nick_02_23_2011.radbench/Benchmarks/bug3/docs/bug-478336.html

Show Obsolete (2) View All

[reply] [-] [reply] [-]Description

backport to 1.9.0 (for SpiderMonkey 1.8 source
release) v2 (901 bytes, patch)
2009-03-11 14:14 PDT, Jason Orendorff

dveditz: approval1.9.0.11+ Details
| Diff

Add an attachment (proposed patch, testcase, etc.)

paul.barnetta@smx.co.nz 2009-02-12 19:33:48 PST

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.5)
Gecko/2009010509 Gentoo Firefox/3.0.5
Build Identifier: Current tip

I have a multi-threaded application that periodically crashes, giving the
following assertion error:

$./a.out
Assertion failure: rt->state == JSRTS_UP || rt->state == JSRTS_LAUNCHING, at
jscntxt.cpp:465

I've attached a test program which demonstrates this (see below). The program
spawns many threads, each of which create and then destroy a context before
exiting. I'd expect the number of contexts active at any time to range between
[0..THREADS], possibly transitioning between 0 and non-zero values many times
and showing a race condition in the code?

Reproducible: Always

Steps to Reproduce:
Below is a simple application that exhibits the problem 90+% of the time (for
me) when run directly from the command line:

8<----

#include <stdlib.h>
#include <pthread.h>

#include "jsapi.h"

static JSRuntime *rt;

#define THREADS 100

static void * testfunc(void *ignored) {

 JSContext *cx = JS_NewContext(rt, 0x1000);
 if (cx) {
 JS_BeginRequest(cx);
 JS_DestroyContext(cx);
 }

 return NULL;
}

int main(void) {

 rt = JS_NewRuntime(0x100000);
 if (rt == NULL)
 return 1;

 /* Uncommenting this to guarantee there's always at least
 * one context in the runtime prevents this problem. */
// JSContext *cx = JS_NewContext(rt, 0x1000);

Collapse All
Comments
Expand All
Comments

5/14/12 2:56 PMBug 478336 – rt->state assertion failure in js_DestroyContext creating/destroying many contexts

Page 2 of 12file:///Users/elmas/Repository/Research/ParLab/Benchmarks/C-CPP/R…CH/nick_02_23_2011.radbench/Benchmarks/bug3/docs/bug-478336.html

Show Obsolete (2) View All

[reply] [-] [reply] [-]Description

backport to 1.9.0 (for SpiderMonkey 1.8 source
release) v2 (901 bytes, patch)
2009-03-11 14:14 PDT, Jason Orendorff

dveditz: approval1.9.0.11+ Details
| Diff

Add an attachment (proposed patch, testcase, etc.)

paul.barnetta@smx.co.nz 2009-02-12 19:33:48 PST

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.5)
Gecko/2009010509 Gentoo Firefox/3.0.5
Build Identifier: Current tip

I have a multi-threaded application that periodically crashes, giving the
following assertion error:

$./a.out
Assertion failure: rt->state == JSRTS_UP || rt->state == JSRTS_LAUNCHING, at
jscntxt.cpp:465

I've attached a test program which demonstrates this (see below). The program
spawns many threads, each of which create and then destroy a context before
exiting. I'd expect the number of contexts active at any time to range between
[0..THREADS], possibly transitioning between 0 and non-zero values many times
and showing a race condition in the code?

Reproducible: Always

Steps to Reproduce:
Below is a simple application that exhibits the problem 90+% of the time (for
me) when run directly from the command line:

8<----

#include <stdlib.h>
#include <pthread.h>

#include "jsapi.h"

static JSRuntime *rt;

#define THREADS 100

static void * testfunc(void *ignored) {

 JSContext *cx = JS_NewContext(rt, 0x1000);
 if (cx) {
 JS_BeginRequest(cx);
 JS_DestroyContext(cx);
 }

 return NULL;
}

int main(void) {

 rt = JS_NewRuntime(0x100000);
 if (rt == NULL)
 return 1;

 /* Uncommenting this to guarantee there's always at least
 * one context in the runtime prevents this problem. */
// JSContext *cx = JS_NewContext(rt, 0x1000);

Collapse All
Comments
Expand All
Comments

DO	 NOT	 READ!	

[reply] [-] [reply] [-]Comment 5

[reply] [-] [reply] [-]Comment 6

"../jsgc.cpp", ln=2682) at ../jsutil.cpp:68
#1 0x00299e26 in JS_CallTracer (trc=0xb0bace84, thing=0x39088, kind=2) at
../jsgc.cpp:2682
#2 0x00264aca in js_pinned_atom_tracer (table=0x34be4, hdr=0x80fe00, number=0,
arg=0xb0bace84) at ../jsatom.cpp:551
#3 0x00274548 in JS_DHashTableEnumerate (table=0x34be4, etor=0x264a12
<js_pinned_atom_tracer>, arg=0xb0bace84) at ../jsdhash.cpp:742
#4 0x00264b52 in js_TraceAtomState (trc=0xb0bace84, allAtoms=0) at
../jsatom.cpp:566
#5 0x0029ba23 in js_TraceRuntime (trc=0xb0bace84, allAtoms=0) at
../jsgc.cpp:3147
#6 0x0029c259 in js_GC (cx=0x50e6c0, gckind=GC_NORMAL) at ../jsgc.cpp:3562
#7 0x00266e77 in js_DestroyContext (cx=0x50e6c0, mode=JSDCM_FORCE_GC) at
../jscntxt.cpp:541
#8 0x002506db in JS_DestroyContext (cx=0x50e6c0) at ../jsapi.cpp:1089
#9 0x00001eb2 in testfunc (ignored=0x0) at
/Users/jason/dev/moz/spidermonkey-1.8/testapp.cpp:16
#10 0x9169b6f5 in _pthread_start ()
#11 0x9169b5b2 in thread_start ()

Igor Bukanov 2009-03-09 17:47:12 PDT

At least one problem that I can see from the code is that js_GC does the check:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
 return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Igor Bukanov 2009-03-10 07:55:37 PDT

With the test program on 64-bit Linux I could not reproduce the bug from the
comment 4 but I do see assert from the comment 0 after bumping the number of
threads to 1000. The assert is indeed rare, about 2-3% of all runs and I could
not reproduce it under GDB. On the other hand, good old printfs have shown what
was going on. The problem comes from the following code in js_NewContext:

 JS_LOCK_GC(rt);
 for (;;) {
 first = (rt->contextList.next == &rt->contextList);
 if (rt->state == JSRTS_UP) {
 JS_ASSERT(!first);

 /* Ensure that it is safe to update rt->contextList below. */
 js_WaitForGC(rt);
 break;
 }
...
 JS_WAIT_CONDVAR(rt->stateChange, JS_NO_TIMEOUT);
 }
 JS_APPEND_LINK(&cx->link, &rt->contextList);

12	

Possible	 buggy	 schedule	 from	 bug	 report	
DO	 NOT	 READ!	

Fixed,	 known	 schedule	 for	 threads	 A	 and	 B	

Unknown	 schedule	 for	 A	 and	 C	

13	

Concurrit: A DSL for writing
concurrent tests

Systema&cally	 	
explore	 	

all-‐and-‐only	 	
thread	 schedules	
specified	 by	 DSL	

+	
Test in !

Concurrit DSL!

Specify	 a	 set	 of	 schedules	 in	 formal,	
concise,	 and	 convenient	 way	

[reply] [-] [reply] [-]Comment 5

[reply] [-] [reply] [-]Comment 6

"../jsgc.cpp", ln=2682) at ../jsutil.cpp:68
#1 0x00299e26 in JS_CallTracer (trc=0xb0bace84, thing=0x39088, kind=2) at
../jsgc.cpp:2682
#2 0x00264aca in js_pinned_atom_tracer (table=0x34be4, hdr=0x80fe00, number=0,
arg=0xb0bace84) at ../jsatom.cpp:551
#3 0x00274548 in JS_DHashTableEnumerate (table=0x34be4, etor=0x264a12
<js_pinned_atom_tracer>, arg=0xb0bace84) at ../jsdhash.cpp:742
#4 0x00264b52 in js_TraceAtomState (trc=0xb0bace84, allAtoms=0) at
../jsatom.cpp:566
#5 0x0029ba23 in js_TraceRuntime (trc=0xb0bace84, allAtoms=0) at
../jsgc.cpp:3147
#6 0x0029c259 in js_GC (cx=0x50e6c0, gckind=GC_NORMAL) at ../jsgc.cpp:3562
#7 0x00266e77 in js_DestroyContext (cx=0x50e6c0, mode=JSDCM_FORCE_GC) at
../jscntxt.cpp:541
#8 0x002506db in JS_DestroyContext (cx=0x50e6c0) at ../jsapi.cpp:1089
#9 0x00001eb2 in testfunc (ignored=0x0) at
/Users/jason/dev/moz/spidermonkey-1.8/testapp.cpp:16
#10 0x9169b6f5 in _pthread_start ()
#11 0x9169b5b2 in thread_start ()

Igor Bukanov 2009-03-09 17:47:12 PDT

At least one problem that I can see from the code is that js_GC does the check:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
 return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Igor Bukanov 2009-03-10 07:55:37 PDT

With the test program on 64-bit Linux I could not reproduce the bug from the
comment 4 but I do see assert from the comment 0 after bumping the number of
threads to 1000. The assert is indeed rare, about 2-3% of all runs and I could
not reproduce it under GDB. On the other hand, good old printfs have shown what
was going on. The problem comes from the following code in js_NewContext:

 JS_LOCK_GC(rt);
 for (;;) {
 first = (rt->contextList.next == &rt->contextList);
 if (rt->state == JSRTS_UP) {
 JS_ASSERT(!first);

 /* Ensure that it is safe to update rt->contextList below. */
 js_WaitForGC(rt);
 break;
 }
...
 JS_WAIT_CONDVAR(rt->stateChange, JS_NO_TIMEOUT);
 }
 JS_APPEND_LINK(&cx->link, &rt->contextList);

5/14/12 2:56 PMBug 478336 – rt->state assertion failure in js_DestroyContext creating/destroying many contexts

Page 2 of 12file:///Users/elmas/Repository/Research/ParLab/Benchmarks/C-CPP/R…CH/nick_02_23_2011.radbench/Benchmarks/bug3/docs/bug-478336.html

Show Obsolete (2) View All

[reply] [-] [reply] [-]Description

backport to 1.9.0 (for SpiderMonkey 1.8 source
release) v2 (901 bytes, patch)
2009-03-11 14:14 PDT, Jason Orendorff

dveditz: approval1.9.0.11+ Details
| Diff

Add an attachment (proposed patch, testcase, etc.)

paul.barnetta@smx.co.nz 2009-02-12 19:33:48 PST

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.5)
Gecko/2009010509 Gentoo Firefox/3.0.5
Build Identifier: Current tip

I have a multi-threaded application that periodically crashes, giving the
following assertion error:

$./a.out
Assertion failure: rt->state == JSRTS_UP || rt->state == JSRTS_LAUNCHING, at
jscntxt.cpp:465

I've attached a test program which demonstrates this (see below). The program
spawns many threads, each of which create and then destroy a context before
exiting. I'd expect the number of contexts active at any time to range between
[0..THREADS], possibly transitioning between 0 and non-zero values many times
and showing a race condition in the code?

Reproducible: Always

Steps to Reproduce:
Below is a simple application that exhibits the problem 90+% of the time (for
me) when run directly from the command line:

8<----

#include <stdlib.h>
#include <pthread.h>

#include "jsapi.h"

static JSRuntime *rt;

#define THREADS 100

static void * testfunc(void *ignored) {

 JSContext *cx = JS_NewContext(rt, 0x1000);
 if (cx) {
 JS_BeginRequest(cx);
 JS_DestroyContext(cx);
 }

 return NULL;
}

int main(void) {

 rt = JS_NewRuntime(0x100000);
 if (rt == NULL)
 return 1;

 /* Uncommenting this to guarantee there's always at least
 * one context in the runtime prevents this problem. */
// JSContext *cx = JS_NewContext(rt, 0x1000);

Collapse All
Comments
Expand All
Comments

Software Under Test!

Insights/ideas	 about	
thread	 schedules	

14	

Unit-‐tesEng	 programs	 with	 Concurrit	
(What	 about	 integraEon	 tests?:	 Wait	 for	 conclusion)	

SoQware	 Under	 Test	 (SUT)	 	 Test	 in	 Concurrit	 DSL	
Runs	 concurrently	 with	 SUT	

!
 !
!
 !
!
 !
!
 !
!
 !
!
 !

Thread A!

Thread B!
!

Thread C!
!
testfunc() {!
 JSContext *cx = JS_NewContext(rt, 0x1000);!
 if (cx) {!
 JS_BeginRequest(cx);!
 JS_DestroyContext(cx);!
 }!
}!
! Unblock	 thread	

Send	 event	 	
and	 block	

Instrumented	 to	 control	

Kinds	 of	 events:	 Memory	 read/write,	 func&on	 enter/return,	 func&on	 call,	 	
	 	 	 	 	 	 	 	 	 end	 of	 thread,	 at	 par&cular	 source	 line,	 user-‐defined	

15	

Unit-‐tesEng	 programs	 with	 Concurrit	
(What	 about	 integraEon	 tests?:	 Wait	 for	 conclusion)	

SoQware	 Under	 Test	 (SUT)	 	 Concurrit	 monitor	
Runs	 concurrently	 with	 SUT	

// Test in Concurrit DSL!
!
 !
!
 !
!
 !

Thread A!

Kinds	 of	 events:	 Memory	 read/write,	 func&on	 enter/return,	 func&on	 call,	 	
	 	 	 	 	 	 	 	 	 end	 of	 thread,	 at	 par&cular	 source	 line,	 user-‐defined	

Thread B!
!

Thread C!
!
testfunc() {!
 JSContext *cx = JS_NewContext(rt, 0x1000);!
 if (cx) {!
 JS_BeginRequest(cx);!
 JS_DestroyContext(cx);!
 }!
}!
! Unblock	 thread	

Send	 event	 	
and	 block	

Instrumented	 to	 control	

•  Bug	 report	 for	 Mozilla	 SpiderMonkey	

•  Write	 tests	 in	 Concurrit	 DSL	 to	 generate	 buggy	 schedule	

– Simple	 schedules:	

•  Few	 schedules	 BUT	 not	 manifes&ng	 bug	

– All	 schedules:	
• Manifests	 bug	 BUT	 too	 many	 schedules	

– Target	 buggy	 schedule	 in	 bug	 report	
•  Few	 schedules	 AND	 manifests	 bug	

16	

Outline	

[reply] [-] [reply] [-]Comment 5

[reply] [-] [reply] [-]Comment 6

"../jsgc.cpp", ln=2682) at ../jsutil.cpp:68
#1 0x00299e26 in JS_CallTracer (trc=0xb0bace84, thing=0x39088, kind=2) at
../jsgc.cpp:2682
#2 0x00264aca in js_pinned_atom_tracer (table=0x34be4, hdr=0x80fe00, number=0,
arg=0xb0bace84) at ../jsatom.cpp:551
#3 0x00274548 in JS_DHashTableEnumerate (table=0x34be4, etor=0x264a12
<js_pinned_atom_tracer>, arg=0xb0bace84) at ../jsdhash.cpp:742
#4 0x00264b52 in js_TraceAtomState (trc=0xb0bace84, allAtoms=0) at
../jsatom.cpp:566
#5 0x0029ba23 in js_TraceRuntime (trc=0xb0bace84, allAtoms=0) at
../jsgc.cpp:3147
#6 0x0029c259 in js_GC (cx=0x50e6c0, gckind=GC_NORMAL) at ../jsgc.cpp:3562
#7 0x00266e77 in js_DestroyContext (cx=0x50e6c0, mode=JSDCM_FORCE_GC) at
../jscntxt.cpp:541
#8 0x002506db in JS_DestroyContext (cx=0x50e6c0) at ../jsapi.cpp:1089
#9 0x00001eb2 in testfunc (ignored=0x0) at
/Users/jason/dev/moz/spidermonkey-1.8/testapp.cpp:16
#10 0x9169b6f5 in _pthread_start ()
#11 0x9169b5b2 in thread_start ()

Igor Bukanov 2009-03-09 17:47:12 PDT

At least one problem that I can see from the code is that js_GC does the check:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
 return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Igor Bukanov 2009-03-10 07:55:37 PDT

With the test program on 64-bit Linux I could not reproduce the bug from the
comment 4 but I do see assert from the comment 0 after bumping the number of
threads to 1000. The assert is indeed rare, about 2-3% of all runs and I could
not reproduce it under GDB. On the other hand, good old printfs have shown what
was going on. The problem comes from the following code in js_NewContext:

 JS_LOCK_GC(rt);
 for (;;) {
 first = (rt->contextList.next == &rt->contextList);
 if (rt->state == JSRTS_UP) {
 JS_ASSERT(!first);

 /* Ensure that it is safe to update rt->contextList below. */
 js_WaitForGC(rt);
 break;
 }
...
 JS_WAIT_CONDVAR(rt->stateChange, JS_NO_TIMEOUT);
 }
 JS_APPEND_LINK(&cx->link, &rt->contextList);

17	

Possible	 buggy	 schedule	 from	 bug	 report	

18	

First	 test:	 Run	 each	 thread	 sequenEally	 unEl	 compleEon	
(No	 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

19	

First	 test:	 Run	 each	 thread	 sequenEally	 unEl	 compleEon	
(No	 interleaving)	

Wait	 un&l	 3	 dis&nct	 threads	 	
sending	 events	

TA! TB! TC!

20	

First	 test:	 Run	 each	 thread	 sequenEally	 unEl	 compleEon	
(No	 interleaving)	

Loop	 un&l	 all	 3	 threads	
complete	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

21	

First	 test:	 Run	 each	 thread	 sequenEally	 unEl	 compleEon	
(No	 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

Pick	 one	 of	 the	 threads	

TA! TB! TC!

Backtrack/choice	 point	 TA!

22	

First	 test:	 Run	 each	 thread	 sequenEally	 unEl	 compleEon	
(No	 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

Run	 selected	 thread	 	
un&l	 it	 completes	

TA! TB! TC!

Backtrack/choice	 point	

Thread	 	
completes	

TA!

23	

First	 test:	 Run	 each	 thread	 sequenEally	 unEl	 compleEon	
(No	 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	 point	

Pick	 one	 of	 the	 threads	

Thread	 	
completes	

TA!

TC!

24	

First	 test:	 Run	 each	 thread	 sequenEally	 unEl	 compleEon	
(No	 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

Run	 selected	 thread	 	
un&l	 it	 completes	

Thread	 	
completes	

Thread	 	
completes	

TA!

TC!

25	

First	 test:	 Run	 each	 thread	 sequenEally	 unEl	 compleEon	
(No	 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	 point	

Pick	 one	 of	 the	 threads	

Thread	 	
completes	

Thread	 	
completes	

TA!

TC!

TB!

26	

First	 test:	 Run	 each	 thread	 sequenEally	 unEl	 compleEon	
(No	 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	 point	

Run	 selected	 thread	 	
un&l	 it	 completes	

Thread	 	
completes	

Thread	 	
completes	

Thread	 	
completes	

TA!

TC!

TB!

27	

First	 test:	 Run	 each	 thread	 sequenEally	 unEl	 compleEon	
(No	 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	 point	

Pick	 a	 different	 thread	
when	 backtracked	

Thread	 	
completes	

Thread	 	
completes	

TA!

TC!

TB!

Thread	 	
completes	

28	

First	 test:	 Run	 each	 thread	 sequenEally	 unEl	 compleEon	
(No	 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	 point	

Thread	 	
completes	

Thread	 	
completes	

TA!

TC!

TB!

TB!

Thread	 	
completes	

Pick	 a	 different	 thread	
when	 backtracked	

29	

First	 test:	 Run	 each	 thread	 sequenEally	 unEl	 compleEon	
(No	 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	 point	

Run	 selected	 thread	 	
un&l	 it	 completes	

Thread	 	
completes	

Thread	 	
completes	

TA!

TC!

TB!

Thread	 	
completes	

TB!

Thread	 	
completes	

30	

First	 test:	 Run	 each	 thread	 sequenEally	 unEl	 compleEon	
(No	 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	 point	

Thread	 	
completes	

Thread	 	
completes	

Thread	 	
completes	

TA!

TC!

TB!

Thread	 	
completes	

TB!

TC!

Pick	 a	 different	 thread	
when	 backtracked	

31	

First	 test:	 Run	 each	 thread	 sequenEally	 unEl	 compleEon	
(No	 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	 point	

Run	 selected	 thread	 	
un&l	 it	 completes	

Thread	 	
completes	

Thread	 	
completes	

Thread	 	
completes	

TA!

TC!

TB!

Thread	 	
completes	

Thread	 	
completes	

TB!

TC!

32	

First	 test:	 Run	 each	 thread	 sequenEally	 unEl	 compleEon	
(No	 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	 point	

Thread	 	
completes	

Thread	 	
completes	

Thread	 	
completes	

TA!

TC!

TB!

Thread	 	
completes	

TB!

TC!

TA!

Thread	 	
completes	

Pick	 a	 different	 thread	
when	 backtracked	

33	

First	 test:	 Run	 each	 thread	 sequenEally	 unEl	 compleEon	
(No	 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	 point	

Run	 selected	 thread	 	
un&l	 it	 completes	

Thread	 	
completes	

Thread	 	
completes	

Thread	 	
completes	

TA!

TC!

TB!

Thread	 	
completes	

Thread	 	
completes	

TB!

TC!

Thread	 	
completes	

TA!

34	

First	 test:	 Run	 each	 thread	 sequenEally	 unEl	 compleEon	
(No	 interleaving)	

Result:	
6	 schedules	
No	 asser&on	 failure!	

Thread	 	
completes	

Thread	 	
completes	

Thread	 	
completes	

Thread	 	
completes	

Thread	 	
completes	

Thread	 	
completes	

Thread	 	
completes	

Thread	 	
completes	

Thread	 	
completes	

Thread	 	
completes	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	 point	

Thread	 	
completes	

35	

Second	 test:	 Run	 each	 thread	 sequenEally	 	
unEl	 it	 returns	 from	 funcEon	

Result:	
<	 50	 schedules	
No	 asser&on	 failure!	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL RETURNS FROM JS_NewContext,!
 JS_BeginRequest, OR JS_DestroyContext!
}!

TA! TB! TC!

Backtrack/choice	 point	

FuncReturn	
FuncReturn	

FuncReturn	

FuncReturn	

FuncReturn	

FuncReturn	

FuncReturn	 	

FuncReturn	 FuncReturn	

FuncReturn	
...	

...	

...	

...	
...	

...	
...	

...	
...	

...	
...	

•  Bug	 report	 for	 Mozilla	 SpiderMonkey	

•  Write	 tests	 in	 Concurrit	 DSL	 to	 generate	 buggy	 schedule	

– Simple	 schedules	 	

•  Few	 schedules	 BUT	 not	 manifes&ng	 bug	

– All	 schedules	
• Manifests	 bug	 BUT	 too	 many	 schedules	

– Target	 buggy	 schedule	 in	 bug	 report	
•  Few	 schedules	 AND	 manifests	 bug	

36	

Outline	

37	

First	 test:	 Run	 each	 thread	 sequenEally	 unEl	 compleEon	
(No	 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
}!

38	

Generate	 all	 thread	 schedules	
Result:	
>	 100,000	 schedules	
Asser&on	 failure	 	
ader	 a	 night!	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL NEXT EVENT!
}!

TA! TB! TC!

Backtrack/choice	 point	

...	 ...	

...	

...	
...	

...	
...	 ...	

...	 	
...	

1.   Cannot	 control/instrument	 everything!	
•  Must	 tolerate	 uncontrolled	 non-‐determinism	
•  Backtrack-‐and-‐replay-‐prefix	 may	 fail	

	
2.   Localize	 the	 search	

•  To	 par&cular	 func&ons,	 opera&ons,	 states,	 ...	
	
BUT:	 Can	 express	 tradi&onal	 model	 checking	 algorithms	

•  If	 every	 opera&on	 can	 be	 controlled	
•  Feasible	 for	 small	 programs,	 data	 structures,	 ...	 39	

What	 is	 different	 from	 	
(tradiEonal)	 model	 checking?	

•  Bug	 report	 for	 Mozilla	 SpiderMonkey	

•  Write	 tests	 in	 Concurrit	 DSL	 to	 generate	 buggy	 schedule	

– Simple	 schedules	 	

•  Few	 schedules	 BUT	 not	 manifes&ng	 bug	

– All	 schedules	
• Manifests	 bug	 BUT	 too	 many	 schedules	

– Target	 buggy	 schedule	 in	 bug	 report	
•  Few	 schedules	 AND	 manifests	 bug	

40	

Outline	

[reply] [-] [reply] [-]Comment 5

[reply] [-] [reply] [-]Comment 6

"../jsgc.cpp", ln=2682) at ../jsutil.cpp:68
#1 0x00299e26 in JS_CallTracer (trc=0xb0bace84, thing=0x39088, kind=2) at
../jsgc.cpp:2682
#2 0x00264aca in js_pinned_atom_tracer (table=0x34be4, hdr=0x80fe00, number=0,
arg=0xb0bace84) at ../jsatom.cpp:551
#3 0x00274548 in JS_DHashTableEnumerate (table=0x34be4, etor=0x264a12
<js_pinned_atom_tracer>, arg=0xb0bace84) at ../jsdhash.cpp:742
#4 0x00264b52 in js_TraceAtomState (trc=0xb0bace84, allAtoms=0) at
../jsatom.cpp:566
#5 0x0029ba23 in js_TraceRuntime (trc=0xb0bace84, allAtoms=0) at
../jsgc.cpp:3147
#6 0x0029c259 in js_GC (cx=0x50e6c0, gckind=GC_NORMAL) at ../jsgc.cpp:3562
#7 0x00266e77 in js_DestroyContext (cx=0x50e6c0, mode=JSDCM_FORCE_GC) at
../jscntxt.cpp:541
#8 0x002506db in JS_DestroyContext (cx=0x50e6c0) at ../jsapi.cpp:1089
#9 0x00001eb2 in testfunc (ignored=0x0) at
/Users/jason/dev/moz/spidermonkey-1.8/testapp.cpp:16
#10 0x9169b6f5 in _pthread_start ()
#11 0x9169b5b2 in thread_start ()

Igor Bukanov 2009-03-09 17:47:12 PDT

At least one problem that I can see from the code is that js_GC does the check:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
 return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Igor Bukanov 2009-03-10 07:55:37 PDT

With the test program on 64-bit Linux I could not reproduce the bug from the
comment 4 but I do see assert from the comment 0 after bumping the number of
threads to 1000. The assert is indeed rare, about 2-3% of all runs and I could
not reproduce it under GDB. On the other hand, good old printfs have shown what
was going on. The problem comes from the following code in js_NewContext:

 JS_LOCK_GC(rt);
 for (;;) {
 first = (rt->contextList.next == &rt->contextList);
 if (rt->state == JSRTS_UP) {
 JS_ASSERT(!first);

 /* Ensure that it is safe to update rt->contextList below. */
 js_WaitForGC(rt);
 break;
 }
...
 JS_WAIT_CONDVAR(rt->stateChange, JS_NO_TIMEOUT);
 }
 JS_APPEND_LINK(&cx->link, &rt->contextList);

41	

Possible	 buggy	 schedule	 from	 bug	 report	

Build Identifier: Current tip

I have a multi-threaded application that periodically crashes, giving the
following assertion error:

$./a.out
Assertion failure: rt->state == JSRTS_UP || rt->state == JSRTS_LAUNCHING, at
jscntxt.cpp:465

I've attached a test program which demonstrates this (see below). The program
spawns many threads, each of which create and then destroy a context before
exiting. I'd expect the number of contexts active at any time to range between
[0..THREADS], possibly transitioning between 0 and non-zero values many times
and showing a race condition in the code?

Reproducible: Always

Steps to Reproduce:
Below is a simple application that exhibits the problem 90+% of the time (for
me) when run directly from the command line:

8<----

#include <stdlib.h>
#include <pthread.h>

#include "jsapi.h"

static JSRuntime *rt;

#define THREADS 100

static void * testfunc(void *ignored) {

 JSContext *cx = JS_NewContext(rt, 0x1000);
 if (cx) {
 JS_BeginRequest(cx);
 JS_DestroyContext(cx);
 }

 return NULL;
}

int main(void) {

 rt = JS_NewRuntime(0x100000);
 if (rt == NULL)
 return 1;

 /* Uncommenting this to guarantee there's always at least
 * one context in the runtime prevents this problem. */
// JSContext *cx = JS_NewContext(rt, 0x1000);

 int i;
 pthread_t thread[THREADS];
 for (i = 0; i < THREADS; i++) {
 pthread_create(&thread[i], NULL, testfunc, NULL);
 }

 for (i = 0; i < THREADS; i++) {
 pthread_join(thread[i], NULL);
 }

 return 0;
}

8<----

It seems to be very sensitive to timings as I have trouble reproducing the
issue in gdb. For me to trigger it there I just need create/destroy more
contexts per thread, but YMMV.

8<----

Threads A, B!

Thread C!

42	

Generate	 all	 thread	 schedules	
// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL NEXT EVENT!
}!

43	

ExploiEng	 programmer’s	 insights	 about	 bug	
// Test in Concurrit DSL!
!
1: TC = WAIT_FOR_THREAD(ENTERS JS_NewContext)!
!
2: TA = WAIT_FOR_DISTINCT_THREAD(ENTERS JS_DestroyContext)!
!
3: TB = WAIT_FOR_DISTINCT_THREAD(ENTERS JS_DestroyContext)!
!
4: LOOP UNTIL TA, TB, TC COMPLETE {!
!
5: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
6: RUN T UNTIL NEXT EVENT!
 }!

Enter	 JS_DestroyContext	

Enter	 JS_DestroyContext	

...	 ...	

...	

...	
...	

...	
...	 ...	

...	 	
...	

Enter	 JS_NewContext	 TC!

TA!

TB!

Result:	
<	 50,000	 schedules	
Asser&on	 failure	
ader	 a	 few	 hours!	

1.   Cannot	 control/instrument	 everything!	
•  Must	 tolerate	 uncontrolled	 non-‐determinism	
•  Backtrack-‐and-‐replay-‐prefix	 may	 fail	

	
2.   Localize	 the	 search	

•  To	 par&cular	 func&ons,	 opera&ons,	 states,	 ...	
	
BUT:	 Can	 express	 tradi&onal	 model	 checking	 algorithms	

•  If	 every	 opera&on	 can	 be	 controlled	
•  Feasible	 for	 small	 programs,	 data	 structures,	 ...	 44	

What	 is	 different	 from	 	
(tradiEonal)	 model	 checking?	

[reply] [-] [reply] [-]Comment 5

[reply] [-] [reply] [-]Comment 6

"../jsgc.cpp", ln=2682) at ../jsutil.cpp:68
#1 0x00299e26 in JS_CallTracer (trc=0xb0bace84, thing=0x39088, kind=2) at
../jsgc.cpp:2682
#2 0x00264aca in js_pinned_atom_tracer (table=0x34be4, hdr=0x80fe00, number=0,
arg=0xb0bace84) at ../jsatom.cpp:551
#3 0x00274548 in JS_DHashTableEnumerate (table=0x34be4, etor=0x264a12
<js_pinned_atom_tracer>, arg=0xb0bace84) at ../jsdhash.cpp:742
#4 0x00264b52 in js_TraceAtomState (trc=0xb0bace84, allAtoms=0) at
../jsatom.cpp:566
#5 0x0029ba23 in js_TraceRuntime (trc=0xb0bace84, allAtoms=0) at
../jsgc.cpp:3147
#6 0x0029c259 in js_GC (cx=0x50e6c0, gckind=GC_NORMAL) at ../jsgc.cpp:3562
#7 0x00266e77 in js_DestroyContext (cx=0x50e6c0, mode=JSDCM_FORCE_GC) at
../jscntxt.cpp:541
#8 0x002506db in JS_DestroyContext (cx=0x50e6c0) at ../jsapi.cpp:1089
#9 0x00001eb2 in testfunc (ignored=0x0) at
/Users/jason/dev/moz/spidermonkey-1.8/testapp.cpp:16
#10 0x9169b6f5 in _pthread_start ()
#11 0x9169b5b2 in thread_start ()

Igor Bukanov 2009-03-09 17:47:12 PDT

At least one problem that I can see from the code is that js_GC does the check:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
 return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Igor Bukanov 2009-03-10 07:55:37 PDT

With the test program on 64-bit Linux I could not reproduce the bug from the
comment 4 but I do see assert from the comment 0 after bumping the number of
threads to 1000. The assert is indeed rare, about 2-3% of all runs and I could
not reproduce it under GDB. On the other hand, good old printfs have shown what
was going on. The problem comes from the following code in js_NewContext:

 JS_LOCK_GC(rt);
 for (;;) {
 first = (rt->contextList.next == &rt->contextList);
 if (rt->state == JSRTS_UP) {
 JS_ASSERT(!first);

 /* Ensure that it is safe to update rt->contextList below. */
 js_WaitForGC(rt);
 break;
 }
...
 JS_WAIT_CONDVAR(rt->stateChange, JS_NO_TIMEOUT);
 }
 JS_APPEND_LINK(&cx->link, &rt->contextList);

45	

Possible	 buggy	 schedule	 from	 bug	 report	
•  Shared	 variables	 involved	 in	 the	 bug:	 	

•  rt-‐>state,	 rt-‐>gcLock,	 rt-‐>gcThread	
•  Reschedule	 threads	 when	 accessing	 them.	

46	

ExploiEng	 programmer’s	 insights	 about	 bug	
// Test in Concurrit DSL!
!
1: TC = WAIT_FOR_THREAD(ENTERS JS_NewContext)!
!
2: TA = WAIT_FOR_DISTINCT_THREAD(ENTERS JS_DestroyContext)!
!
3: TB = WAIT_FOR_DISTINCT_THREAD(ENTERS JS_DestroyContext)!
!
4: LOOP UNTIL TA, TB, TC COMPLETE {!
!
5: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
6: RUN T UNTIL NEXT EVENT!
 }!

47	

ExploiEng	 programmer’s	 insights	 about	 bug	
// Test in Concurrit DSL!
!
1: TC = WAIT_FOR_THREAD(ENTERS JS_NewContext)!
!
2: TA = WAIT_FOR_DISTINCT_THREAD(ENTERS JS_DestroyContext)!
!
3: TB = WAIT_FOR_DISTINCT_THREAD(ENTERS JS_DestroyContext)!
!
4: LOOP UNTIL TA, TB, TC COMPLETE {!
!
5: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
6: RUN T UNTIL READS OR WRITES &rt->state, &rt->gcLock, !
 OR &rt->gcThread!
 }!

...	 ...	

...	

...	
...	

...	 	

Read	
rt-‐>state	

Write	
rt-‐>gcThread	

Read	
rt-‐>gcLock	

Read	
rt-‐>gcThread	

Write	
rt-‐>state	

Read	
rt-‐>gcLock	

Write	
rt-‐>state	

Write	
rt-‐>state	 ...	

...	
...	

Enter	 JS_DestroyContext	

Enter	 JS_DestroyContext	

Enter	 JS_NewContext	 TC!

TA!

TB!

Result:	
~	 2000	 schedules	
Asser&on	 failure	
ader	 2	 hours!	

48	

Possible	 buggy	 schedule	 from	 bug	 report	
[reply] [-] [reply] [-]Comment 5

[reply] [-] [reply] [-]Comment 6

"../jsgc.cpp", ln=2682) at ../jsutil.cpp:68
#1 0x00299e26 in JS_CallTracer (trc=0xb0bace84, thing=0x39088, kind=2) at
../jsgc.cpp:2682
#2 0x00264aca in js_pinned_atom_tracer (table=0x34be4, hdr=0x80fe00, number=0,
arg=0xb0bace84) at ../jsatom.cpp:551
#3 0x00274548 in JS_DHashTableEnumerate (table=0x34be4, etor=0x264a12
<js_pinned_atom_tracer>, arg=0xb0bace84) at ../jsdhash.cpp:742
#4 0x00264b52 in js_TraceAtomState (trc=0xb0bace84, allAtoms=0) at
../jsatom.cpp:566
#5 0x0029ba23 in js_TraceRuntime (trc=0xb0bace84, allAtoms=0) at
../jsgc.cpp:3147
#6 0x0029c259 in js_GC (cx=0x50e6c0, gckind=GC_NORMAL) at ../jsgc.cpp:3562
#7 0x00266e77 in js_DestroyContext (cx=0x50e6c0, mode=JSDCM_FORCE_GC) at
../jscntxt.cpp:541
#8 0x002506db in JS_DestroyContext (cx=0x50e6c0) at ../jsapi.cpp:1089
#9 0x00001eb2 in testfunc (ignored=0x0) at
/Users/jason/dev/moz/spidermonkey-1.8/testapp.cpp:16
#10 0x9169b6f5 in _pthread_start ()
#11 0x9169b5b2 in thread_start ()

Igor Bukanov 2009-03-09 17:47:12 PDT

At least one problem that I can see from the code is that js_GC does the check:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
 return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Igor Bukanov 2009-03-10 07:55:37 PDT

With the test program on 64-bit Linux I could not reproduce the bug from the
comment 4 but I do see assert from the comment 0 after bumping the number of
threads to 1000. The assert is indeed rare, about 2-3% of all runs and I could
not reproduce it under GDB. On the other hand, good old printfs have shown what
was going on. The problem comes from the following code in js_NewContext:

 JS_LOCK_GC(rt);
 for (;;) {
 first = (rt->contextList.next == &rt->contextList);
 if (rt->state == JSRTS_UP) {
 JS_ASSERT(!first);

 /* Ensure that it is safe to update rt->contextList below. */
 js_WaitForGC(rt);
 break;
 }
...
 JS_WAIT_CONDVAR(rt->stateChange, JS_NO_TIMEOUT);
 }
 JS_APPEND_LINK(&cx->link, &rt->contextList);

Fixed,	 known	 schedule	
for	 threads	 A	 and	 B	

Unknown	 schedule	 	
for	 A	 and	 C	

Setup	

49	

Final	 test	
// Test in Concurrit DSL!
!
TC = WAIT_FOR_THREAD(!
 ENTERS JS_NewContext)!
!
TA = WAIT_FOR_DISTINCT_THREAD(!
 ENTERS JS_DestroyContext)!
!
TB = WAIT_FOR_DISTINCT_THREAD(!
 ENTERS JS_DestroyContext)!
!
RUN TA UNTIL READS &rt->state IN js_GC!
!
RUN TB UNTIL COMPLETES!
!
RUN TA UNTIL WRITES &rt->gcThread IN js_GC!
!
LOOP UNTIL TA, TC COMPLETE {!
!
 BACKTRACK HERE WITH T IN [TA, TC]!
!
 RUN T UNTIL READS OR WRITES MEMORY!
}!

[reply] [-] [reply] [-]Comment 5

[reply] [-] [reply] [-]Comment 6

"../jsgc.cpp", ln=2682) at ../jsutil.cpp:68
#1 0x00299e26 in JS_CallTracer (trc=0xb0bace84, thing=0x39088, kind=2) at
../jsgc.cpp:2682
#2 0x00264aca in js_pinned_atom_tracer (table=0x34be4, hdr=0x80fe00, number=0,
arg=0xb0bace84) at ../jsatom.cpp:551
#3 0x00274548 in JS_DHashTableEnumerate (table=0x34be4, etor=0x264a12
<js_pinned_atom_tracer>, arg=0xb0bace84) at ../jsdhash.cpp:742
#4 0x00264b52 in js_TraceAtomState (trc=0xb0bace84, allAtoms=0) at
../jsatom.cpp:566
#5 0x0029ba23 in js_TraceRuntime (trc=0xb0bace84, allAtoms=0) at
../jsgc.cpp:3147
#6 0x0029c259 in js_GC (cx=0x50e6c0, gckind=GC_NORMAL) at ../jsgc.cpp:3562
#7 0x00266e77 in js_DestroyContext (cx=0x50e6c0, mode=JSDCM_FORCE_GC) at
../jscntxt.cpp:541
#8 0x002506db in JS_DestroyContext (cx=0x50e6c0) at ../jsapi.cpp:1089
#9 0x00001eb2 in testfunc (ignored=0x0) at
/Users/jason/dev/moz/spidermonkey-1.8/testapp.cpp:16
#10 0x9169b6f5 in _pthread_start ()
#11 0x9169b5b2 in thread_start ()

Igor Bukanov 2009-03-09 17:47:12 PDT

At least one problem that I can see from the code is that js_GC does the check:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
 return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Igor Bukanov 2009-03-10 07:55:37 PDT

With the test program on 64-bit Linux I could not reproduce the bug from the
comment 4 but I do see assert from the comment 0 after bumping the number of
threads to 1000. The assert is indeed rare, about 2-3% of all runs and I could
not reproduce it under GDB. On the other hand, good old printfs have shown what
was going on. The problem comes from the following code in js_NewContext:

 JS_LOCK_GC(rt);
 for (;;) {
 first = (rt->contextList.next == &rt->contextList);
 if (rt->state == JSRTS_UP) {
 JS_ASSERT(!first);

 /* Ensure that it is safe to update rt->contextList below. */
 js_WaitForGC(rt);
 break;
 }
...
 JS_WAIT_CONDVAR(rt->stateChange, JS_NO_TIMEOUT);
 }
 JS_APPEND_LINK(&cx->link, &rt->contextList);

Fixed,	 known	 schedule	
for	 threads	 A	 and	 B	

Unknown	 schedule	 	
for	 A	 and	 C	

Setup	

50	

Final	 test	

Triggers	 asser&on	 failure	
in	 <	 30	 thread	 schedules	 +	

[reply] [-] [reply] [-]Comment 5

[reply] [-] [reply] [-]Comment 6

"../jsgc.cpp", ln=2682) at ../jsutil.cpp:68
#1 0x00299e26 in JS_CallTracer (trc=0xb0bace84, thing=0x39088, kind=2) at
../jsgc.cpp:2682
#2 0x00264aca in js_pinned_atom_tracer (table=0x34be4, hdr=0x80fe00, number=0,
arg=0xb0bace84) at ../jsatom.cpp:551
#3 0x00274548 in JS_DHashTableEnumerate (table=0x34be4, etor=0x264a12
<js_pinned_atom_tracer>, arg=0xb0bace84) at ../jsdhash.cpp:742
#4 0x00264b52 in js_TraceAtomState (trc=0xb0bace84, allAtoms=0) at
../jsatom.cpp:566
#5 0x0029ba23 in js_TraceRuntime (trc=0xb0bace84, allAtoms=0) at
../jsgc.cpp:3147
#6 0x0029c259 in js_GC (cx=0x50e6c0, gckind=GC_NORMAL) at ../jsgc.cpp:3562
#7 0x00266e77 in js_DestroyContext (cx=0x50e6c0, mode=JSDCM_FORCE_GC) at
../jscntxt.cpp:541
#8 0x002506db in JS_DestroyContext (cx=0x50e6c0) at ../jsapi.cpp:1089
#9 0x00001eb2 in testfunc (ignored=0x0) at
/Users/jason/dev/moz/spidermonkey-1.8/testapp.cpp:16
#10 0x9169b6f5 in _pthread_start ()
#11 0x9169b5b2 in thread_start ()

Igor Bukanov 2009-03-09 17:47:12 PDT

At least one problem that I can see from the code is that js_GC does the check:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
 return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Igor Bukanov 2009-03-10 07:55:37 PDT

With the test program on 64-bit Linux I could not reproduce the bug from the
comment 4 but I do see assert from the comment 0 after bumping the number of
threads to 1000. The assert is indeed rare, about 2-3% of all runs and I could
not reproduce it under GDB. On the other hand, good old printfs have shown what
was going on. The problem comes from the following code in js_NewContext:

 JS_LOCK_GC(rt);
 for (;;) {
 first = (rt->contextList.next == &rt->contextList);
 if (rt->state == JSRTS_UP) {
 JS_ASSERT(!first);

 /* Ensure that it is safe to update rt->contextList below. */
 js_WaitForGC(rt);
 break;
 }
...
 JS_WAIT_CONDVAR(rt->stateChange, JS_NO_TIMEOUT);
 }
 JS_APPEND_LINK(&cx->link, &rt->contextList);

// Test in Concurrit DSL!
!
TC = WAIT_FOR_THREAD(!
 ENTERS JS_NewContext)!
!
TA = WAIT_FOR_DISTINCT_THREAD(!
 ENTERS JS_DestroyContext)!
!
TB = WAIT_FOR_DISTINCT_THREAD(!
 ENTERS JS_DestroyContext)!
!
RUN TA UNTIL READS &rt->state IN js_GC!
!
RUN TB UNTIL COMPLETES!
!
RUN TA UNTIL WRITES &rt->gcThread IN js_GC!
!
LOOP UNTIL TA, TC COMPLETE {!
!
 BACKTRACK HERE WITH T IN [TA, TC]!
!
 RUN T UNTIL READS OR WRITES MEMORY!
}!

Software Under Test!
......!
......!

(Add	 to	 regression	 test	 suit)	

•  ImplementaEon:	 DSL	 embedded	 in	 C++	
•  Prototype:	 h+p://code.google.com/p/concurrit/	

–  Wrote	 concise	 tests	 for	 (real/manually-‐inserted)	 bugs	 in	
well-‐known	 benchmarks	
•  Reproducing	 bugs	 	

	 using	 <	 20	 lines	 of	 DSL	 code,	 ader	 <	 30	 schedules	
–  Inspect:	 bbuf,	 bzip2,	 pbzip2,	 pfscan	
– PARSEC:	 dedup,	 streamcluster	
– RADBench:	 SpiderMonkey	 1/2,	 Mozilla	 NSPR	 1/2/3	

• Ongoing:	 Apache	 hgpd,	 Chromium,	 Memcached	
–  Can	 write	 various	 model	 checking	 algorithms	 (next	 slide)	
	

51	

ImplementaEon/EvaluaEon	

52	

Default	 search	 policies	

EXPLORE_THREADS_UNTIL_COMPLETION(THREADS) {!
 LOOP UNTIL ALL THREADS COMPLETE {!
 BACKTRACK HERE WITH T IN THREADS!
 RUN T UNTIL COMPLETION!
 }!
}	

EXPLORE_ALL_SCHEDULES(THREADS) {!
 LOOP UNTIL ALL THREADS COMPLETE {!
 BACKTRACK HERE WITH T IN THREADS!
 RUN T UNTIL NEXT EVENT!
 }!
}	

EXPLORE_TWO_CONTEXT_BOUNDED_SCHEDULES(THREADS) {!
 BACKTRACK HERE WITH T1 IN THREADS!
 BACKTRACK HERE LOOP NONDETERMINISTICALLY {!
 RUN T1 UNTIL NEXT EVENT!
 }!
!
 BACKTRACK HERE WITH T2 IN [THREADS EXCEPT T1]!
 BACKTRACK HERE LOOP NONDETERMINISTICALLY {!
 RUN T2 UNTIL NEXT EVENT!
 }!
!
 EXPLORE_THREADS_UNTIL_COMPLETION(THREADS)!
}	

53	

PosiEoning	 Concurrit:	 Usage	 scenarios	

Insert	 sleeps:	
Explore	 one	 schedule	

Model	 checking:	
Explore	 all	 schedules	

Concurrit	

Control	 user-‐defined	 events	
•  Portable,	 tes&ng	 library	
•  Manual	 instrumenta&on	
•  Generate	 exact/perfect	
schedule	

Control	 all	 operaEons	
•  Exhaus&ve	 tes&ng	 tool	
•  Automated	
instrumenta&on	

•  Generate	 all	 schedules	

54	

Unit-‐tesEng	 programs	 with	 Concurrit	

SoQware	 Under	 Test	 (SUT)	 	 Test	 in	 Concurrit	 DSL	
Runs	 concurrently	 with	 SUT	

!
 !
!
 !
!
 !
!
 !
!
 !
!
 !

Thread A!

Thread B!
!

Thread C!
!
testfunc() {!
 JSContext *cx = JS_NewContext(rt, 0x1000);!
 if (cx) {!
 JS_BeginRequest(cx);!
 JS_DestroyContext(cx);!
 }!
}!
! Unblock	 thread	

Send	 event	 	
and	 block	

Instrumented	 to	 control	

55	

Ongoing	 work:	 IntegraEon	 tesEng	
Controlling	 mulE-‐process/distributed	 applicaEons	

Concurrit	 monitor	 process	
// Test in Concurrit DSL!
!
 !
!

Apache	 web	 server	
// Server threads!
// handling requests!
!
 !
!

Request	 process	 1	
// Threads sending !
// requests to server!
!
 !
!

Request	 process	 2	
// Threads sending !
// requests to server!
!
 !
!

Events	

Events	

Events	

56	

Approaches	 to	 controlling	 thread	 schedules	
Test	 run:	 	 A	 set	 of	 execu&ons	 of	 the	 test	 driver.	
Success:	 At	 least	 one	 execu&on	 in	 the	 run	 hits	 the	 bug.	

%	 Rate	 of	 success	 (Robustness)	

Exhaust.	
model	
check	

Run	 1000X	
&mes	 	

(no	 control)	

Run	 once	 Ideal	 Test	

Run	 100X	
&mes	 with	
manual	
control	
(sleeps)	

N
um

be
r	 o

f	 e
xe
cu
&o

ns
	 in
	 e
ac
h	
te
st
	 ru

n	

100	

Our	 target	
Explore	
<	 1000	
execs.	

and	 robust	

