
P A R A L L E L C O M P U T I N G L A B O R A T O R Y

EECS
Electrical Engineering and

Computer Sciences Berkeley Parlab

CONCURRIT:	
 Tes&ng	
 Concurrent	
 Programs	

with	
 Programmable	
 State-­‐Space	
 Explora&on	

(A	
 DSL	
 for	
 Wri&ng	
 Concurrent	
 Tests)	

Jacob Burnim, Tayfun Elmas*!
George Necula, Koushik Sen!

University of California, Berkeley!

HotPar 2012!

•  Consider:	

– Mozilla	
 SpiderMonkey	
 JavaScript	
 Engine	

• Used	
 in	
 Firefox	
 browser	

•  121K	
 lines	
 of	
 code	

– Want	
 to	
 test	
 JS_NewContext,	
 JS_DestroyContext!
• Contain	
 2K	
 <	
 lines	
 of	
 code	

2	

How	
 to	
 write	
 an	
 xUnit-­‐like	
 test	
 for	
 a	

concurrent	
 program?	

•  Fix	
 inputs	
 è	
 Determinis&c	
 test	

–  If	
 there	
 is	
 a	
 bug,	
 every	
 run	
 manifests	
 it!	

3	

How	
 to	
 write	
 an	
 xUnit-­‐like	
 test	
 for	
 a	

sequen&al	
 program?	

// check if any assertion fails!
test_Context() { !
 ...!
 JSContext *cx = JS_NewContext(rt, 0x1000);!
 if (cx) {!
 ...!
 JS_DestroyContext(cx);!
 }!
}!

•  Nondeterminism	
 due	
 to	
 thread	
 schedules	

– Hard	
 to	
 specify	
 and	
 control	
 schedule!	

	

4	

How	
 to	
 write	
 an	
 xUnit-­‐like	
 test	
 for	
 a	

concurrent	
 program?	

// check if any assertion fails!
test_Context() {!
 !
 ... // create 10 threads to run testfunc!
 !
}!
!
testfunc() {!
 JSContext *cx = JS_NewContext(rt, 0x1000);!
 if (cx) {!
 ...!
 JS_DestroyContext(cx);!
 }!
}!

1.   Stress	
 tesEng:	
 No	
 control	
 over	
 thread	
 schedules	

è	
 No	
 guarantee	
 about	
 generated	
 schedules	

5	

Approaches	
 to	
 tesEng	
 concurrent	
 programs	

// check if any assertion fails!
test_Context() {!
 Loop 1000 times {!
 ... // create 100 threads to run testfunc!
 }!
}!
!
testfunc() {!
 JSContext *cx = JS_NewContext(rt, 0x1000);!
 if (cx) {!
 ...!
 JS_DestroyContext(cx);!
 }!
}!

1.   Stress	
 tesEng:	
 No	
 control	
 over	
 thread	
 schedules	

è	
 No	
 guarantee	
 about	
 generated	
 schedules	

2.   Model	
 checking:	
 Enumerate	
 all	
 possible	
 schedules	

–  Too	
 many	
 schedules	
 	

è	
 Not	
 scalable	
 for	
 large	
 programs!	

6	

Approaches	
 to	
 tesEng	
 concurrent	
 programs	

Missing:	
 Programmer	
 has	
 no	
 direct	
 control	

on	
 thread	
 schedule	

•  Key	
 to	
 effec&ve	
 and	
 efficient	
 tes&ng	

7	

Programmers	
 have	
 oQen	
 insights/ideas	

about	
 which	
 schedules	
 to	
 look	
 at	

DO	
 NOT	
 READ!	

8	

Programmers	
 have	
 oQen	
 insights/ideas	

about	
 which	
 schedules	
 to	
 look	
 at	

6/4/12 Bug 476934 – JS_GC can dereference a NULL pointer (in a multi-‐‑threaded app using JS_ClearCon…

2/13localhost/Users/telmas/Repository/Research/ParLab/Benchmarks/C-‐‑CPP/…/bug-‐‑476934

JS_BeginRequest are called; when they're returned JS_EndRequest and
JS_ClearContextThread are called.

The crashes consistently occurs inside js_GC in the following code block:

 while ((acx = js_ContextIterator(rt, JS_FALSE, &iter)) != NULL) {
 if (!acx->thread || acx->thread == cx->thread)
 continue;
 memset(acx->thread->gcFreeLists, 0, sizeof acx->thread->gcFreeLists);
 GSN_CACHE_CLEAR(&acx->thread->gsnCache);
 }

acx always appears to be valid but acx->thread == NULL when the application
crashes (which may be in the memset or GSN_CACHE_CLEAR line). This shouldn't
occur as these lines should be skipped if (!acx->thread)..

What I suspect is happening is that one thread is calling JS_GC while a second
is calling JS_EndRequest and JS_ClearContextThread (in returning a context to
the pool). The call to JS_GC will block until JS_EndRequest finishes.. JS_GC
then resumes.. but while JS_GC is running JS_ClearContextThread also runs (no
locking is done in this?), modifying the value of acx->thread as the code above
runs. acx->thread becomes NULL just before it gets dereferenced and the
application exits.

Reproducible: Always

Steps to Reproduce:
I've tried to put together the smallest bit of code to replicate the problem
(and hope I haven't missed anything trimming it down). main() sets up an
environment pretty much following the example in the User Guide then sits
endlessly calling JS_GC. Before the loop it spawns one or more threads that
create a new JSContext each and sit in their own loops beginning and ending
requests for those contexts.

If the child threads just call:
 JS_BeginRequest
 JS_EndRequest
then the program runs and runs without any problems, as expected.

If the child threads call:
 JS_SetContextThread
 JS_BeginRequest
 JS_EndRequest
 JS_ClearContextThread
then the program crashes after a few seconds for me.

If the child threads call:
 JS_SetContextThread
 JS_ClearContextThread
the crashes happen almost instantly.

8<----

#include <pthread.h>
#include <stdlib.h>

#define XP_UNIX
#define JS_THREADSAFE
#include "jsapi.h"

#define THREADS 1

static JSClass global_class = {
 "global", JSCLASS_GLOBAL_FLAGS,
 JS_PropertyStub, JS_PropertyStub, JS_PropertyStub, JS_PropertyStub,
 JS_EnumerateStub, JS_ResolveStub, JS_ConvertStub, JS_FinalizeStub,
 JSCLASS_NO_OPTIONAL_MEMBERS

6/4/12 Bug 476934 – JS_GC can dereference a NULL pointer (in a multi-‐‑threaded app using JS_ClearCon…

1/13localhost/Users/telmas/Repository/Research/ParLab/Benchmarks/C-‐‑CPP/…/bug-‐‑476934

/DVW�&RPPHQW

Save Changes

EFODU\#EFODU\�FRP
EHQW�PR]LOOD#JPDLO�FRP
EUHQGDQ#PR]LOOD�RUJ
KLJKPLQG��#JPDLO�FRP
LJRU#PLU��RUJ
MRUHQGRUII#PR]LOOD�FRP
0LNH0#5HWHN6ROXWLRQV�FRP
VDPXHO�VLGOHU�ROG#JPDLO�FRP
VD\UHU#JPDLO�FRP

6KRZ�2EVROHWH�����9LHZ�$OO

>UHSO\@�>�@�>UHSO\@�>�@'HVFULSWLRQ

)LUVW�/DVW�3UHY�1H[W����1R�VHDUFK�UHVXOWV�DYDLODEOH

%XJ����������-6B*&�FDQ�GHUHIHUHQFH�D�18//�SRLQWHU��LQ�D�PXOWL�
WKUHDGHG�DSS�XVLQJ�-6B&OHDU&RQWH[W7KUHDG�

6WDWXV� 5(62/9('�),;('
:KLWHERDUG� IL[HG�LQ�WUDFHPRQNH\
.H\ZRUGV� IL[HG����������IL[HG�����

3URGXFW� &RUH
&RPSRQHQW� -DYD6FULSW�(QJLQH
9HUVLRQ� XQVSHFLILHG
3ODWIRUP� [���/LQX[

,PSRUWDQFH� ���QRUPDO��YRWH�
7DUJHW�0LOHVWRQH� ���
$VVLJQHG�7R� ,JRU�%XNDQRY
4$�&RQWDFW� JHQHUDO#VSLGHUPRQNH\�EXJV

85/�

'HSHQGV�RQ�
%ORFNV� MV���VUF��������������

� 6KRZ�GHSHQGHQF\�WUHH
��JUDSK

�

5HSRUWHG� �����������������367�E\
SDXO�EDUQHWWD#VP[�FR�Q]

0RGLILHG� �����������������3'7��+LVWRU\�

&&�/LVW� �$GG�PH�WR�&&�OLVW�
��XVHUV��HGLW�

)ODJV�

VD\UHU� EORFNLQJ����� +

� ZDQWHG‑IHQQHF���

EFODU\� LQ‑WHVWVXLWH -‐‑

EFODU\� LQ‑OLWPXV -‐‑

6HH�$OVR�

EORFNLQJ�
IHQQHF�

���

EORFNLQJ���� ���

VWDWXV���� ���

EORFNLQJ������ ���

VWDWXV������ ���

EORFNLQJ������ ���

VWDWXV������ ���

$WWDFKPHQWV

EDFNSRUW�WR�������Y���������.%��SDWFK��
�����������������3'7��,JRU�%XNDQRY

VDPXHO�VLGOHU�ROG��DSSURYDO���������� 'HWDLOV�_�'LII

$GG�DQ�DWWDFKPHQW��SURSRVHG�SDWFK��WHVWFDVH��HWF��

SDXO�EDUQHWWD#VP[�FR�Q]� ��������������������367

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.5)
Gecko/2009010509 Gentoo Firefox/3.0.5
Build Identifier: SpiderMonkey 1.7.0

See
http://groups.google.com/group/mozilla.dev.tech.js-
engine/browse_thread/thread/b1bf3460297f01e3
for the initial discussion about this.

I have a multi-threaded application that periodically crashes. I maintain a
pool of JSContexts: as they're requested from the pool JS_SetContextThread and
JS_BeginRequest are called; when they're returned JS_EndRequest and

&ROODSVH
$OO
&RPPHQWV
([SDQG�$OO
&RPPHQWV

6/4/12 Bug 476934 – JS_GC can dereference a NULL pointer (in a multi-‐‑threaded app using JS_ClearCon…

1/13localhost/Users/telmas/Repository/Research/ParLab/Benchmarks/C-‐‑CPP/…/bug-‐‑476934

/DVW�&RPPHQW

Save Changes

EFODU\#EFODU\�FRP
EHQW�PR]LOOD#JPDLO�FRP
EUHQGDQ#PR]LOOD�RUJ
KLJKPLQG��#JPDLO�FRP
LJRU#PLU��RUJ
MRUHQGRUII#PR]LOOD�FRP
0LNH0#5HWHN6ROXWLRQV�FRP
VDPXHO�VLGOHU�ROG#JPDLO�FRP
VD\UHU#JPDLO�FRP

6KRZ�2EVROHWH�����9LHZ�$OO

>UHSO\@�>�@�>UHSO\@�>�@'HVFULSWLRQ

)LUVW�/DVW�3UHY�1H[W����1R�VHDUFK�UHVXOWV�DYDLODEOH

%XJ����������-6B*&�FDQ�GHUHIHUHQFH�D�18//�SRLQWHU��LQ�D�PXOWL�
WKUHDGHG�DSS�XVLQJ�-6B&OHDU&RQWH[W7KUHDG�

6WDWXV� 5(62/9('�),;('
:KLWHERDUG� IL[HG�LQ�WUDFHPRQNH\
.H\ZRUGV� IL[HG����������IL[HG�����

3URGXFW� &RUH
&RPSRQHQW� -DYD6FULSW�(QJLQH
9HUVLRQ� XQVSHFLILHG
3ODWIRUP� [���/LQX[

,PSRUWDQFH� ���QRUPDO��YRWH�
7DUJHW�0LOHVWRQH� ���
$VVLJQHG�7R� ,JRU�%XNDQRY
4$�&RQWDFW� JHQHUDO#VSLGHUPRQNH\�EXJV

85/�

'HSHQGV�RQ�
%ORFNV� MV���VUF��������������

� 6KRZ�GHSHQGHQF\�WUHH
��JUDSK

�

5HSRUWHG� �����������������367�E\
SDXO�EDUQHWWD#VP[�FR�Q]

0RGLILHG� �����������������3'7��+LVWRU\�

&&�/LVW� �$GG�PH�WR�&&�OLVW�
��XVHUV��HGLW�

)ODJV�

VD\UHU� EORFNLQJ����� +

� ZDQWHG‑IHQQHF���

EFODU\� LQ‑WHVWVXLWH -‐‑

EFODU\� LQ‑OLWPXV -‐‑

6HH�$OVR�

EORFNLQJ�
IHQQHF�

���

EORFNLQJ���� ���

VWDWXV���� ���

EORFNLQJ������ ���

VWDWXV������ ���

EORFNLQJ������ ���

VWDWXV������ ���

$WWDFKPHQWV

EDFNSRUW�WR�������Y���������.%��SDWFK��
�����������������3'7��,JRU�%XNDQRY

VDPXHO�VLGOHU�ROG��DSSURYDO���������� 'HWDLOV�_�'LII

$GG�DQ�DWWDFKPHQW��SURSRVHG�SDWFK��WHVWFDVH��HWF��

SDXO�EDUQHWWD#VP[�FR�Q]� ��������������������367

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.5)
Gecko/2009010509 Gentoo Firefox/3.0.5
Build Identifier: SpiderMonkey 1.7.0

See
http://groups.google.com/group/mozilla.dev.tech.js-
engine/browse_thread/thread/b1bf3460297f01e3
for the initial discussion about this.

I have a multi-threaded application that periodically crashes. I maintain a
pool of JSContexts: as they're requested from the pool JS_SetContextThread and
JS_BeginRequest are called; when they're returned JS_EndRequest and

&ROODSVH
$OO
&RPPHQWV
([SDQG�$OO
&RPPHQWV

DO	
 NOT	
 READ!	

9	

Programmers	
 have	
 oQen	
 insights/ideas	

about	
 which	
 schedules	
 to	
 look	
 at	

[reply] [-] [reply] [-]Comment 5

[reply] [-] [reply] [-]Comment 6

"../jsgc.cpp", ln=2682) at ../jsutil.cpp:68
#1 0x00299e26 in JS_CallTracer (trc=0xb0bace84, thing=0x39088, kind=2) at
../jsgc.cpp:2682
#2 0x00264aca in js_pinned_atom_tracer (table=0x34be4, hdr=0x80fe00, number=0,
arg=0xb0bace84) at ../jsatom.cpp:551
#3 0x00274548 in JS_DHashTableEnumerate (table=0x34be4, etor=0x264a12
<js_pinned_atom_tracer>, arg=0xb0bace84) at ../jsdhash.cpp:742
#4 0x00264b52 in js_TraceAtomState (trc=0xb0bace84, allAtoms=0) at
../jsatom.cpp:566
#5 0x0029ba23 in js_TraceRuntime (trc=0xb0bace84, allAtoms=0) at
../jsgc.cpp:3147
#6 0x0029c259 in js_GC (cx=0x50e6c0, gckind=GC_NORMAL) at ../jsgc.cpp:3562
#7 0x00266e77 in js_DestroyContext (cx=0x50e6c0, mode=JSDCM_FORCE_GC) at
../jscntxt.cpp:541
#8 0x002506db in JS_DestroyContext (cx=0x50e6c0) at ../jsapi.cpp:1089
#9 0x00001eb2 in testfunc (ignored=0x0) at
/Users/jason/dev/moz/spidermonkey-1.8/testapp.cpp:16
#10 0x9169b6f5 in _pthread_start ()
#11 0x9169b5b2 in thread_start ()

Igor Bukanov 2009-03-09 17:47:12 PDT

At least one problem that I can see from the code is that js_GC does the check:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
 return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Igor Bukanov 2009-03-10 07:55:37 PDT

With the test program on 64-bit Linux I could not reproduce the bug from the
comment 4 but I do see assert from the comment 0 after bumping the number of
threads to 1000. The assert is indeed rare, about 2-3% of all runs and I could
not reproduce it under GDB. On the other hand, good old printfs have shown what
was going on. The problem comes from the following code in js_NewContext:

 JS_LOCK_GC(rt);
 for (;;) {
 first = (rt->contextList.next == &rt->contextList);
 if (rt->state == JSRTS_UP) {
 JS_ASSERT(!first);

 /* Ensure that it is safe to update rt->contextList below. */
 js_WaitForGC(rt);
 break;
 }
...
 JS_WAIT_CONDVAR(rt->stateChange, JS_NO_TIMEOUT);
 }
 JS_APPEND_LINK(&cx->link, &rt->contextList);

DO	
 NOT	
 READ!	

Fixed,	
 known	
 schedule	
 for	
 threads	
 A	
 and	
 B	

Unknown	
 schedule	
 for	
 A	
 and	
 C	

10	

InserEng	
 sleeps	
 to	
 enforce	
 a	
 schedule	

DO	
 NOT	
 READ!	

Sleeps:	
 	

•  Lightweight	
 and	
 convenient	
 tool	
 for	
 programmer	

•  BUT:	
 Ad	
 hoc,	
 not	
 reliable	
 for	
 long,	
 complex	
 schedules.	

	

	
 Need:	
 Formal	
 and	
 robust	
 way	
 to	
 describe	
 schedules!	

Build Identifier: Current tip

I have a multi-threaded application that periodically crashes, giving the
following assertion error:

$./a.out
Assertion failure: rt->state == JSRTS_UP || rt->state == JSRTS_LAUNCHING, at
jscntxt.cpp:465

I've attached a test program which demonstrates this (see below). The program
spawns many threads, each of which create and then destroy a context before
exiting. I'd expect the number of contexts active at any time to range between
[0..THREADS], possibly transitioning between 0 and non-zero values many times
and showing a race condition in the code?

Reproducible: Always

Steps to Reproduce:
Below is a simple application that exhibits the problem 90+% of the time (for
me) when run directly from the command line:

8<----

#include <stdlib.h>
#include <pthread.h>

#include "jsapi.h"

static JSRuntime *rt;

#define THREADS 100

static void * testfunc(void *ignored) {

 JSContext *cx = JS_NewContext(rt, 0x1000);
 if (cx) {
 JS_BeginRequest(cx);
 JS_DestroyContext(cx);
 }

 return NULL;
}

int main(void) {

 rt = JS_NewRuntime(0x100000);
 if (rt == NULL)
 return 1;

 /* Uncommenting this to guarantee there's always at least
 * one context in the runtime prevents this problem. */
// JSContext *cx = JS_NewContext(rt, 0x1000);

 int i;
 pthread_t thread[THREADS];
 for (i = 0; i < THREADS; i++) {
 pthread_create(&thread[i], NULL, testfunc, NULL);
 }

 for (i = 0; i < THREADS; i++) {
 pthread_join(thread[i], NULL);
 }

 return 0;
}

8<----

It seems to be very sensitive to timings as I have trouble reproducing the
issue in gdb. For me to trigger it there I just need create/destroy more
contexts per thread, but YMMV.

8<----

•  In	
 RADBench	
 [Jalbert,	
 Sen,	
 HotPar’10]	

11	

Case	
 study:	
 A	
 bug	
 in	
 SpiderMonkey	
 (1.8rc1)	

5/14/12 2:56 PMBug 478336 – rt->state assertion failure in js_DestroyContext creating/destroying many contexts

Page 2 of 12file:///Users/elmas/Repository/Research/ParLab/Benchmarks/C-CPP/R…CH/nick_02_23_2011.radbench/Benchmarks/bug3/docs/bug-478336.html

Show Obsolete (2) View All

[reply] [-] [reply] [-]Description

backport to 1.9.0 (for SpiderMonkey 1.8 source
release) v2 (901 bytes, patch)
2009-03-11 14:14 PDT, Jason Orendorff

dveditz: approval1.9.0.11+ Details
| Diff

Add an attachment (proposed patch, testcase, etc.)

paul.barnetta@smx.co.nz 2009-02-12 19:33:48 PST

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.5)
Gecko/2009010509 Gentoo Firefox/3.0.5
Build Identifier: Current tip

I have a multi-threaded application that periodically crashes, giving the
following assertion error:

$./a.out
Assertion failure: rt->state == JSRTS_UP || rt->state == JSRTS_LAUNCHING, at
jscntxt.cpp:465

I've attached a test program which demonstrates this (see below). The program
spawns many threads, each of which create and then destroy a context before
exiting. I'd expect the number of contexts active at any time to range between
[0..THREADS], possibly transitioning between 0 and non-zero values many times
and showing a race condition in the code?

Reproducible: Always

Steps to Reproduce:
Below is a simple application that exhibits the problem 90+% of the time (for
me) when run directly from the command line:

8<----

#include <stdlib.h>
#include <pthread.h>

#include "jsapi.h"

static JSRuntime *rt;

#define THREADS 100

static void * testfunc(void *ignored) {

 JSContext *cx = JS_NewContext(rt, 0x1000);
 if (cx) {
 JS_BeginRequest(cx);
 JS_DestroyContext(cx);
 }

 return NULL;
}

int main(void) {

 rt = JS_NewRuntime(0x100000);
 if (rt == NULL)
 return 1;

 /* Uncommenting this to guarantee there's always at least
 * one context in the runtime prevents this problem. */
// JSContext *cx = JS_NewContext(rt, 0x1000);

Collapse All
Comments
Expand All
Comments

5/14/12 2:56 PMBug 478336 – rt->state assertion failure in js_DestroyContext creating/destroying many contexts

Page 2 of 12file:///Users/elmas/Repository/Research/ParLab/Benchmarks/C-CPP/R…CH/nick_02_23_2011.radbench/Benchmarks/bug3/docs/bug-478336.html

Show Obsolete (2) View All

[reply] [-] [reply] [-]Description

backport to 1.9.0 (for SpiderMonkey 1.8 source
release) v2 (901 bytes, patch)
2009-03-11 14:14 PDT, Jason Orendorff

dveditz: approval1.9.0.11+ Details
| Diff

Add an attachment (proposed patch, testcase, etc.)

paul.barnetta@smx.co.nz 2009-02-12 19:33:48 PST

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.5)
Gecko/2009010509 Gentoo Firefox/3.0.5
Build Identifier: Current tip

I have a multi-threaded application that periodically crashes, giving the
following assertion error:

$./a.out
Assertion failure: rt->state == JSRTS_UP || rt->state == JSRTS_LAUNCHING, at
jscntxt.cpp:465

I've attached a test program which demonstrates this (see below). The program
spawns many threads, each of which create and then destroy a context before
exiting. I'd expect the number of contexts active at any time to range between
[0..THREADS], possibly transitioning between 0 and non-zero values many times
and showing a race condition in the code?

Reproducible: Always

Steps to Reproduce:
Below is a simple application that exhibits the problem 90+% of the time (for
me) when run directly from the command line:

8<----

#include <stdlib.h>
#include <pthread.h>

#include "jsapi.h"

static JSRuntime *rt;

#define THREADS 100

static void * testfunc(void *ignored) {

 JSContext *cx = JS_NewContext(rt, 0x1000);
 if (cx) {
 JS_BeginRequest(cx);
 JS_DestroyContext(cx);
 }

 return NULL;
}

int main(void) {

 rt = JS_NewRuntime(0x100000);
 if (rt == NULL)
 return 1;

 /* Uncommenting this to guarantee there's always at least
 * one context in the runtime prevents this problem. */
// JSContext *cx = JS_NewContext(rt, 0x1000);

Collapse All
Comments
Expand All
Comments

DO	
 NOT	
 READ!	

[reply] [-] [reply] [-]Comment 5

[reply] [-] [reply] [-]Comment 6

"../jsgc.cpp", ln=2682) at ../jsutil.cpp:68
#1 0x00299e26 in JS_CallTracer (trc=0xb0bace84, thing=0x39088, kind=2) at
../jsgc.cpp:2682
#2 0x00264aca in js_pinned_atom_tracer (table=0x34be4, hdr=0x80fe00, number=0,
arg=0xb0bace84) at ../jsatom.cpp:551
#3 0x00274548 in JS_DHashTableEnumerate (table=0x34be4, etor=0x264a12
<js_pinned_atom_tracer>, arg=0xb0bace84) at ../jsdhash.cpp:742
#4 0x00264b52 in js_TraceAtomState (trc=0xb0bace84, allAtoms=0) at
../jsatom.cpp:566
#5 0x0029ba23 in js_TraceRuntime (trc=0xb0bace84, allAtoms=0) at
../jsgc.cpp:3147
#6 0x0029c259 in js_GC (cx=0x50e6c0, gckind=GC_NORMAL) at ../jsgc.cpp:3562
#7 0x00266e77 in js_DestroyContext (cx=0x50e6c0, mode=JSDCM_FORCE_GC) at
../jscntxt.cpp:541
#8 0x002506db in JS_DestroyContext (cx=0x50e6c0) at ../jsapi.cpp:1089
#9 0x00001eb2 in testfunc (ignored=0x0) at
/Users/jason/dev/moz/spidermonkey-1.8/testapp.cpp:16
#10 0x9169b6f5 in _pthread_start ()
#11 0x9169b5b2 in thread_start ()

Igor Bukanov 2009-03-09 17:47:12 PDT

At least one problem that I can see from the code is that js_GC does the check:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
 return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Igor Bukanov 2009-03-10 07:55:37 PDT

With the test program on 64-bit Linux I could not reproduce the bug from the
comment 4 but I do see assert from the comment 0 after bumping the number of
threads to 1000. The assert is indeed rare, about 2-3% of all runs and I could
not reproduce it under GDB. On the other hand, good old printfs have shown what
was going on. The problem comes from the following code in js_NewContext:

 JS_LOCK_GC(rt);
 for (;;) {
 first = (rt->contextList.next == &rt->contextList);
 if (rt->state == JSRTS_UP) {
 JS_ASSERT(!first);

 /* Ensure that it is safe to update rt->contextList below. */
 js_WaitForGC(rt);
 break;
 }
...
 JS_WAIT_CONDVAR(rt->stateChange, JS_NO_TIMEOUT);
 }
 JS_APPEND_LINK(&cx->link, &rt->contextList);

12	

Possible	
 buggy	
 schedule	
 from	
 bug	
 report	

DO	
 NOT	
 READ!	

Fixed,	
 known	
 schedule	
 for	
 threads	
 A	
 and	
 B	

Unknown	
 schedule	
 for	
 A	
 and	
 C	

13	

Concurrit: A DSL for writing
concurrent tests

Systema&cally	
 	

explore	
 	

all-­‐and-­‐only	
 	

thread	
 schedules	

specified	
 by	
 DSL	

+	

Test in !

Concurrit DSL!

Specify	
 a	
 set	
 of	
 schedules	
 in	
 formal,	

concise,	
 and	
 convenient	
 way	

[reply] [-] [reply] [-]Comment 5

[reply] [-] [reply] [-]Comment 6

"../jsgc.cpp", ln=2682) at ../jsutil.cpp:68
#1 0x00299e26 in JS_CallTracer (trc=0xb0bace84, thing=0x39088, kind=2) at
../jsgc.cpp:2682
#2 0x00264aca in js_pinned_atom_tracer (table=0x34be4, hdr=0x80fe00, number=0,
arg=0xb0bace84) at ../jsatom.cpp:551
#3 0x00274548 in JS_DHashTableEnumerate (table=0x34be4, etor=0x264a12
<js_pinned_atom_tracer>, arg=0xb0bace84) at ../jsdhash.cpp:742
#4 0x00264b52 in js_TraceAtomState (trc=0xb0bace84, allAtoms=0) at
../jsatom.cpp:566
#5 0x0029ba23 in js_TraceRuntime (trc=0xb0bace84, allAtoms=0) at
../jsgc.cpp:3147
#6 0x0029c259 in js_GC (cx=0x50e6c0, gckind=GC_NORMAL) at ../jsgc.cpp:3562
#7 0x00266e77 in js_DestroyContext (cx=0x50e6c0, mode=JSDCM_FORCE_GC) at
../jscntxt.cpp:541
#8 0x002506db in JS_DestroyContext (cx=0x50e6c0) at ../jsapi.cpp:1089
#9 0x00001eb2 in testfunc (ignored=0x0) at
/Users/jason/dev/moz/spidermonkey-1.8/testapp.cpp:16
#10 0x9169b6f5 in _pthread_start ()
#11 0x9169b5b2 in thread_start ()

Igor Bukanov 2009-03-09 17:47:12 PDT

At least one problem that I can see from the code is that js_GC does the check:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
 return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Igor Bukanov 2009-03-10 07:55:37 PDT

With the test program on 64-bit Linux I could not reproduce the bug from the
comment 4 but I do see assert from the comment 0 after bumping the number of
threads to 1000. The assert is indeed rare, about 2-3% of all runs and I could
not reproduce it under GDB. On the other hand, good old printfs have shown what
was going on. The problem comes from the following code in js_NewContext:

 JS_LOCK_GC(rt);
 for (;;) {
 first = (rt->contextList.next == &rt->contextList);
 if (rt->state == JSRTS_UP) {
 JS_ASSERT(!first);

 /* Ensure that it is safe to update rt->contextList below. */
 js_WaitForGC(rt);
 break;
 }
...
 JS_WAIT_CONDVAR(rt->stateChange, JS_NO_TIMEOUT);
 }
 JS_APPEND_LINK(&cx->link, &rt->contextList);

5/14/12 2:56 PMBug 478336 – rt->state assertion failure in js_DestroyContext creating/destroying many contexts

Page 2 of 12file:///Users/elmas/Repository/Research/ParLab/Benchmarks/C-CPP/R…CH/nick_02_23_2011.radbench/Benchmarks/bug3/docs/bug-478336.html

Show Obsolete (2) View All

[reply] [-] [reply] [-]Description

backport to 1.9.0 (for SpiderMonkey 1.8 source
release) v2 (901 bytes, patch)
2009-03-11 14:14 PDT, Jason Orendorff

dveditz: approval1.9.0.11+ Details
| Diff

Add an attachment (proposed patch, testcase, etc.)

paul.barnetta@smx.co.nz 2009-02-12 19:33:48 PST

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.5)
Gecko/2009010509 Gentoo Firefox/3.0.5
Build Identifier: Current tip

I have a multi-threaded application that periodically crashes, giving the
following assertion error:

$./a.out
Assertion failure: rt->state == JSRTS_UP || rt->state == JSRTS_LAUNCHING, at
jscntxt.cpp:465

I've attached a test program which demonstrates this (see below). The program
spawns many threads, each of which create and then destroy a context before
exiting. I'd expect the number of contexts active at any time to range between
[0..THREADS], possibly transitioning between 0 and non-zero values many times
and showing a race condition in the code?

Reproducible: Always

Steps to Reproduce:
Below is a simple application that exhibits the problem 90+% of the time (for
me) when run directly from the command line:

8<----

#include <stdlib.h>
#include <pthread.h>

#include "jsapi.h"

static JSRuntime *rt;

#define THREADS 100

static void * testfunc(void *ignored) {

 JSContext *cx = JS_NewContext(rt, 0x1000);
 if (cx) {
 JS_BeginRequest(cx);
 JS_DestroyContext(cx);
 }

 return NULL;
}

int main(void) {

 rt = JS_NewRuntime(0x100000);
 if (rt == NULL)
 return 1;

 /* Uncommenting this to guarantee there's always at least
 * one context in the runtime prevents this problem. */
// JSContext *cx = JS_NewContext(rt, 0x1000);

Collapse All
Comments
Expand All
Comments

Software Under Test!

Insights/ideas	
 about	

thread	
 schedules	

14	

Unit-­‐tesEng	
 programs	
 with	
 Concurrit	

(What	
 about	
 integraEon	
 tests?:	
 Wait	
 for	
 conclusion)	

SoQware	
 Under	
 Test	
 (SUT)	
 	
 Test	
 in	
 Concurrit	
 DSL	

Runs	
 concurrently	
 with	
 SUT	

!
 !
!
 !
!
 !
!
 !
!
 !
!
 !

Thread A!

Thread B!
!

Thread C!
!
testfunc() {!
 JSContext *cx = JS_NewContext(rt, 0x1000);!
 if (cx) {!
 JS_BeginRequest(cx);!
 JS_DestroyContext(cx);!
 }!
}!
! Unblock	
 thread	

Send	
 event	
 	

and	
 block	

Instrumented	
 to	
 control	

Kinds	
 of	
 events:	
 Memory	
 read/write,	
 func&on	
 enter/return,	
 func&on	
 call,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 end	
 of	
 thread,	
 at	
 par&cular	
 source	
 line,	
 user-­‐defined	

15	

Unit-­‐tesEng	
 programs	
 with	
 Concurrit	

(What	
 about	
 integraEon	
 tests?:	
 Wait	
 for	
 conclusion)	

SoQware	
 Under	
 Test	
 (SUT)	
 	
 Concurrit	
 monitor	

Runs	
 concurrently	
 with	
 SUT	

// Test in Concurrit DSL!
!
 !
!
 !
!
 !

Thread A!

Kinds	
 of	
 events:	
 Memory	
 read/write,	
 func&on	
 enter/return,	
 func&on	
 call,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 end	
 of	
 thread,	
 at	
 par&cular	
 source	
 line,	
 user-­‐defined	

Thread B!
!

Thread C!
!
testfunc() {!
 JSContext *cx = JS_NewContext(rt, 0x1000);!
 if (cx) {!
 JS_BeginRequest(cx);!
 JS_DestroyContext(cx);!
 }!
}!
! Unblock	
 thread	

Send	
 event	
 	

and	
 block	

Instrumented	
 to	
 control	

•  Bug	
 report	
 for	
 Mozilla	
 SpiderMonkey	

•  Write	
 tests	
 in	
 Concurrit	
 DSL	
 to	
 generate	
 buggy	
 schedule	

– Simple	
 schedules:	

•  Few	
 schedules	
 BUT	
 not	
 manifes&ng	
 bug	

– All	
 schedules:	

• Manifests	
 bug	
 BUT	
 too	
 many	
 schedules	

– Target	
 buggy	
 schedule	
 in	
 bug	
 report	

•  Few	
 schedules	
 AND	
 manifests	
 bug	

16	

Outline	

[reply] [-] [reply] [-]Comment 5

[reply] [-] [reply] [-]Comment 6

"../jsgc.cpp", ln=2682) at ../jsutil.cpp:68
#1 0x00299e26 in JS_CallTracer (trc=0xb0bace84, thing=0x39088, kind=2) at
../jsgc.cpp:2682
#2 0x00264aca in js_pinned_atom_tracer (table=0x34be4, hdr=0x80fe00, number=0,
arg=0xb0bace84) at ../jsatom.cpp:551
#3 0x00274548 in JS_DHashTableEnumerate (table=0x34be4, etor=0x264a12
<js_pinned_atom_tracer>, arg=0xb0bace84) at ../jsdhash.cpp:742
#4 0x00264b52 in js_TraceAtomState (trc=0xb0bace84, allAtoms=0) at
../jsatom.cpp:566
#5 0x0029ba23 in js_TraceRuntime (trc=0xb0bace84, allAtoms=0) at
../jsgc.cpp:3147
#6 0x0029c259 in js_GC (cx=0x50e6c0, gckind=GC_NORMAL) at ../jsgc.cpp:3562
#7 0x00266e77 in js_DestroyContext (cx=0x50e6c0, mode=JSDCM_FORCE_GC) at
../jscntxt.cpp:541
#8 0x002506db in JS_DestroyContext (cx=0x50e6c0) at ../jsapi.cpp:1089
#9 0x00001eb2 in testfunc (ignored=0x0) at
/Users/jason/dev/moz/spidermonkey-1.8/testapp.cpp:16
#10 0x9169b6f5 in _pthread_start ()
#11 0x9169b5b2 in thread_start ()

Igor Bukanov 2009-03-09 17:47:12 PDT

At least one problem that I can see from the code is that js_GC does the check:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
 return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Igor Bukanov 2009-03-10 07:55:37 PDT

With the test program on 64-bit Linux I could not reproduce the bug from the
comment 4 but I do see assert from the comment 0 after bumping the number of
threads to 1000. The assert is indeed rare, about 2-3% of all runs and I could
not reproduce it under GDB. On the other hand, good old printfs have shown what
was going on. The problem comes from the following code in js_NewContext:

 JS_LOCK_GC(rt);
 for (;;) {
 first = (rt->contextList.next == &rt->contextList);
 if (rt->state == JSRTS_UP) {
 JS_ASSERT(!first);

 /* Ensure that it is safe to update rt->contextList below. */
 js_WaitForGC(rt);
 break;
 }
...
 JS_WAIT_CONDVAR(rt->stateChange, JS_NO_TIMEOUT);
 }
 JS_APPEND_LINK(&cx->link, &rt->contextList);

17	

Possible	
 buggy	
 schedule	
 from	
 bug	
 report	

18	

First	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 unEl	
 compleEon	

(No	
 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

19	

First	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 unEl	
 compleEon	

(No	
 interleaving)	

Wait	
 un&l	
 3	
 dis&nct	
 threads	
 	

sending	
 events	

TA! TB! TC!

20	

First	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 unEl	
 compleEon	

(No	
 interleaving)	

Loop	
 un&l	
 all	
 3	
 threads	

complete	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

21	

First	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 unEl	
 compleEon	

(No	
 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

Pick	
 one	
 of	
 the	
 threads	

TA! TB! TC!

Backtrack/choice	
 point	
 TA!

22	

First	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 unEl	
 compleEon	

(No	
 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

Run	
 selected	
 thread	
 	

un&l	
 it	
 completes	

TA! TB! TC!

Backtrack/choice	
 point	

Thread	
 	

completes	

TA!

23	

First	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 unEl	
 compleEon	

(No	
 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	
 point	

Pick	
 one	
 of	
 the	
 threads	

Thread	
 	

completes	

TA!

TC!

24	

First	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 unEl	
 compleEon	

(No	
 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

Run	
 selected	
 thread	
 	

un&l	
 it	
 completes	

Thread	
 	

completes	

Thread	
 	

completes	

TA!

TC!

25	

First	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 unEl	
 compleEon	

(No	
 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	
 point	

Pick	
 one	
 of	
 the	
 threads	

Thread	
 	

completes	

Thread	
 	

completes	

TA!

TC!

TB!

26	

First	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 unEl	
 compleEon	

(No	
 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	
 point	

Run	
 selected	
 thread	
 	

un&l	
 it	
 completes	

Thread	
 	

completes	

Thread	
 	

completes	

Thread	
 	

completes	

TA!

TC!

TB!

27	

First	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 unEl	
 compleEon	

(No	
 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	
 point	

Pick	
 a	
 different	
 thread	

when	
 backtracked	

Thread	
 	

completes	

Thread	
 	

completes	

TA!

TC!

TB!

Thread	
 	

completes	

28	

First	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 unEl	
 compleEon	

(No	
 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	
 point	

Thread	
 	

completes	

Thread	
 	

completes	

TA!

TC!

TB!

TB!

Thread	
 	

completes	

Pick	
 a	
 different	
 thread	

when	
 backtracked	

29	

First	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 unEl	
 compleEon	

(No	
 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	
 point	

Run	
 selected	
 thread	
 	

un&l	
 it	
 completes	

Thread	
 	

completes	

Thread	
 	

completes	

TA!

TC!

TB!

Thread	
 	

completes	

TB!

Thread	
 	

completes	

30	

First	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 unEl	
 compleEon	

(No	
 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	
 point	

Thread	
 	

completes	

Thread	
 	

completes	

Thread	
 	

completes	

TA!

TC!

TB!

Thread	
 	

completes	

TB!

TC!

Pick	
 a	
 different	
 thread	

when	
 backtracked	

31	

First	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 unEl	
 compleEon	

(No	
 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	
 point	

Run	
 selected	
 thread	
 	

un&l	
 it	
 completes	

Thread	
 	

completes	

Thread	
 	

completes	

Thread	
 	

completes	

TA!

TC!

TB!

Thread	
 	

completes	

Thread	
 	

completes	

TB!

TC!

32	

First	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 unEl	
 compleEon	

(No	
 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	
 point	

Thread	
 	

completes	

Thread	
 	

completes	

Thread	
 	

completes	

TA!

TC!

TB!

Thread	
 	

completes	

TB!

TC!

TA!

Thread	
 	

completes	

Pick	
 a	
 different	
 thread	

when	
 backtracked	

33	

First	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 unEl	
 compleEon	

(No	
 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	
 point	

Run	
 selected	
 thread	
 	

un&l	
 it	
 completes	

Thread	
 	

completes	

Thread	
 	

completes	

Thread	
 	

completes	

TA!

TC!

TB!

Thread	
 	

completes	

Thread	
 	

completes	

TB!

TC!

Thread	
 	

completes	

TA!

34	

First	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 unEl	
 compleEon	

(No	
 interleaving)	

Result:	

6	
 schedules	

No	
 asser&on	
 failure!	

Thread	
 	

completes	

Thread	
 	

completes	

Thread	
 	

completes	

Thread	
 	

completes	

Thread	
 	

completes	

Thread	
 	

completes	

Thread	
 	

completes	

Thread	
 	

completes	

Thread	
 	

completes	

Thread	
 	

completes	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
 }!

TA! TB! TC!

Backtrack/choice	
 point	

Thread	
 	

completes	

35	

Second	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 	

unEl	
 it	
 returns	
 from	
 funcEon	

Result:	

<	
 50	
 schedules	

No	
 asser&on	
 failure!	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL RETURNS FROM JS_NewContext,!
 JS_BeginRequest, OR JS_DestroyContext!
}!

TA! TB! TC!

Backtrack/choice	
 point	

FuncReturn	

FuncReturn	

FuncReturn	

FuncReturn	

FuncReturn	

FuncReturn	

FuncReturn	
 ...	
 ...	

FuncReturn	
 FuncReturn	

FuncReturn	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

•  Bug	
 report	
 for	
 Mozilla	
 SpiderMonkey	

•  Write	
 tests	
 in	
 Concurrit	
 DSL	
 to	
 generate	
 buggy	
 schedule	

– Simple	
 schedules	
 	

•  Few	
 schedules	
 BUT	
 not	
 manifes&ng	
 bug	

– All	
 schedules	

• Manifests	
 bug	
 BUT	
 too	
 many	
 schedules	

– Target	
 buggy	
 schedule	
 in	
 bug	
 report	

•  Few	
 schedules	
 AND	
 manifests	
 bug	

36	

Outline	

37	

First	
 test:	
 Run	
 each	
 thread	
 sequenEally	
 unEl	
 compleEon	

(No	
 interleaving)	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL COMPLETES!
}!

38	

Generate	
 all	
 thread	
 schedules	

Result:	

>	
 100,000	
 schedules	

Asser&on	
 failure	
 	

ader	
 a	
 night!	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL NEXT EVENT!
}!

TA! TB! TC!

Backtrack/choice	
 point	

...	
 ...	

...	

...	

...	

...	

...	
 ...	

...	
 ...	
 ...	
 ...	

...	

1.   Cannot	
 control/instrument	
 everything!	

•  Must	
 tolerate	
 uncontrolled	
 non-­‐determinism	

•  Backtrack-­‐and-­‐replay-­‐prefix	
 may	
 fail	

	

2.   Localize	
 the	
 search	

•  To	
 par&cular	
 func&ons,	
 opera&ons,	
 states,	
 ...	

	

BUT:	
 Can	
 express	
 tradi&onal	
 model	
 checking	
 algorithms	

•  If	
 every	
 opera&on	
 can	
 be	
 controlled	

•  Feasible	
 for	
 small	
 programs,	
 data	
 structures,	
 ...	
 39	

What	
 is	
 different	
 from	
 	

(tradiEonal)	
 model	
 checking?	

•  Bug	
 report	
 for	
 Mozilla	
 SpiderMonkey	

•  Write	
 tests	
 in	
 Concurrit	
 DSL	
 to	
 generate	
 buggy	
 schedule	

– Simple	
 schedules	
 	

•  Few	
 schedules	
 BUT	
 not	
 manifes&ng	
 bug	

– All	
 schedules	

• Manifests	
 bug	
 BUT	
 too	
 many	
 schedules	

– Target	
 buggy	
 schedule	
 in	
 bug	
 report	

•  Few	
 schedules	
 AND	
 manifests	
 bug	

40	

Outline	

[reply] [-] [reply] [-]Comment 5

[reply] [-] [reply] [-]Comment 6

"../jsgc.cpp", ln=2682) at ../jsutil.cpp:68
#1 0x00299e26 in JS_CallTracer (trc=0xb0bace84, thing=0x39088, kind=2) at
../jsgc.cpp:2682
#2 0x00264aca in js_pinned_atom_tracer (table=0x34be4, hdr=0x80fe00, number=0,
arg=0xb0bace84) at ../jsatom.cpp:551
#3 0x00274548 in JS_DHashTableEnumerate (table=0x34be4, etor=0x264a12
<js_pinned_atom_tracer>, arg=0xb0bace84) at ../jsdhash.cpp:742
#4 0x00264b52 in js_TraceAtomState (trc=0xb0bace84, allAtoms=0) at
../jsatom.cpp:566
#5 0x0029ba23 in js_TraceRuntime (trc=0xb0bace84, allAtoms=0) at
../jsgc.cpp:3147
#6 0x0029c259 in js_GC (cx=0x50e6c0, gckind=GC_NORMAL) at ../jsgc.cpp:3562
#7 0x00266e77 in js_DestroyContext (cx=0x50e6c0, mode=JSDCM_FORCE_GC) at
../jscntxt.cpp:541
#8 0x002506db in JS_DestroyContext (cx=0x50e6c0) at ../jsapi.cpp:1089
#9 0x00001eb2 in testfunc (ignored=0x0) at
/Users/jason/dev/moz/spidermonkey-1.8/testapp.cpp:16
#10 0x9169b6f5 in _pthread_start ()
#11 0x9169b5b2 in thread_start ()

Igor Bukanov 2009-03-09 17:47:12 PDT

At least one problem that I can see from the code is that js_GC does the check:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
 return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Igor Bukanov 2009-03-10 07:55:37 PDT

With the test program on 64-bit Linux I could not reproduce the bug from the
comment 4 but I do see assert from the comment 0 after bumping the number of
threads to 1000. The assert is indeed rare, about 2-3% of all runs and I could
not reproduce it under GDB. On the other hand, good old printfs have shown what
was going on. The problem comes from the following code in js_NewContext:

 JS_LOCK_GC(rt);
 for (;;) {
 first = (rt->contextList.next == &rt->contextList);
 if (rt->state == JSRTS_UP) {
 JS_ASSERT(!first);

 /* Ensure that it is safe to update rt->contextList below. */
 js_WaitForGC(rt);
 break;
 }
...
 JS_WAIT_CONDVAR(rt->stateChange, JS_NO_TIMEOUT);
 }
 JS_APPEND_LINK(&cx->link, &rt->contextList);

41	

Possible	
 buggy	
 schedule	
 from	
 bug	
 report	

Build Identifier: Current tip

I have a multi-threaded application that periodically crashes, giving the
following assertion error:

$./a.out
Assertion failure: rt->state == JSRTS_UP || rt->state == JSRTS_LAUNCHING, at
jscntxt.cpp:465

I've attached a test program which demonstrates this (see below). The program
spawns many threads, each of which create and then destroy a context before
exiting. I'd expect the number of contexts active at any time to range between
[0..THREADS], possibly transitioning between 0 and non-zero values many times
and showing a race condition in the code?

Reproducible: Always

Steps to Reproduce:
Below is a simple application that exhibits the problem 90+% of the time (for
me) when run directly from the command line:

8<----

#include <stdlib.h>
#include <pthread.h>

#include "jsapi.h"

static JSRuntime *rt;

#define THREADS 100

static void * testfunc(void *ignored) {

 JSContext *cx = JS_NewContext(rt, 0x1000);
 if (cx) {
 JS_BeginRequest(cx);
 JS_DestroyContext(cx);
 }

 return NULL;
}

int main(void) {

 rt = JS_NewRuntime(0x100000);
 if (rt == NULL)
 return 1;

 /* Uncommenting this to guarantee there's always at least
 * one context in the runtime prevents this problem. */
// JSContext *cx = JS_NewContext(rt, 0x1000);

 int i;
 pthread_t thread[THREADS];
 for (i = 0; i < THREADS; i++) {
 pthread_create(&thread[i], NULL, testfunc, NULL);
 }

 for (i = 0; i < THREADS; i++) {
 pthread_join(thread[i], NULL);
 }

 return 0;
}

8<----

It seems to be very sensitive to timings as I have trouble reproducing the
issue in gdb. For me to trigger it there I just need create/destroy more
contexts per thread, but YMMV.

8<----

Threads A, B!

Thread C!

42	

Generate	
 all	
 thread	
 schedules	

// Test in Concurrit DSL!
!
1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()!
!
2: LOOP UNTIL TA, TB, TC COMPLETE {!
!
3: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
4: RUN T UNTIL NEXT EVENT!
}!

43	

ExploiEng	
 programmer’s	
 insights	
 about	
 bug	

// Test in Concurrit DSL!
!
1: TC = WAIT_FOR_THREAD(ENTERS JS_NewContext)!
!
2: TA = WAIT_FOR_DISTINCT_THREAD(ENTERS JS_DestroyContext)!
!
3: TB = WAIT_FOR_DISTINCT_THREAD(ENTERS JS_DestroyContext)!
!
4: LOOP UNTIL TA, TB, TC COMPLETE {!
!
5: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
6: RUN T UNTIL NEXT EVENT!
 }!

Enter	
 JS_DestroyContext	

Enter	
 JS_DestroyContext	

...	
 ...	

...	

...	

...	

...	

...	
 ...	

...	
 ...	
 ...	
 ...	

...	

Enter	
 JS_NewContext	
 TC!

TA!

TB!

Result:	

<	
 50,000	
 schedules	

Asser&on	
 failure	

ader	
 a	
 few	
 hours!	

1.   Cannot	
 control/instrument	
 everything!	

•  Must	
 tolerate	
 uncontrolled	
 non-­‐determinism	

•  Backtrack-­‐and-­‐replay-­‐prefix	
 may	
 fail	

	

2.   Localize	
 the	
 search	

•  To	
 par&cular	
 func&ons,	
 opera&ons,	
 states,	
 ...	

	

BUT:	
 Can	
 express	
 tradi&onal	
 model	
 checking	
 algorithms	

•  If	
 every	
 opera&on	
 can	
 be	
 controlled	

•  Feasible	
 for	
 small	
 programs,	
 data	
 structures,	
 ...	
 44	

What	
 is	
 different	
 from	
 	

(tradiEonal)	
 model	
 checking?	

[reply] [-] [reply] [-]Comment 5

[reply] [-] [reply] [-]Comment 6

"../jsgc.cpp", ln=2682) at ../jsutil.cpp:68
#1 0x00299e26 in JS_CallTracer (trc=0xb0bace84, thing=0x39088, kind=2) at
../jsgc.cpp:2682
#2 0x00264aca in js_pinned_atom_tracer (table=0x34be4, hdr=0x80fe00, number=0,
arg=0xb0bace84) at ../jsatom.cpp:551
#3 0x00274548 in JS_DHashTableEnumerate (table=0x34be4, etor=0x264a12
<js_pinned_atom_tracer>, arg=0xb0bace84) at ../jsdhash.cpp:742
#4 0x00264b52 in js_TraceAtomState (trc=0xb0bace84, allAtoms=0) at
../jsatom.cpp:566
#5 0x0029ba23 in js_TraceRuntime (trc=0xb0bace84, allAtoms=0) at
../jsgc.cpp:3147
#6 0x0029c259 in js_GC (cx=0x50e6c0, gckind=GC_NORMAL) at ../jsgc.cpp:3562
#7 0x00266e77 in js_DestroyContext (cx=0x50e6c0, mode=JSDCM_FORCE_GC) at
../jscntxt.cpp:541
#8 0x002506db in JS_DestroyContext (cx=0x50e6c0) at ../jsapi.cpp:1089
#9 0x00001eb2 in testfunc (ignored=0x0) at
/Users/jason/dev/moz/spidermonkey-1.8/testapp.cpp:16
#10 0x9169b6f5 in _pthread_start ()
#11 0x9169b5b2 in thread_start ()

Igor Bukanov 2009-03-09 17:47:12 PDT

At least one problem that I can see from the code is that js_GC does the check:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
 return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Igor Bukanov 2009-03-10 07:55:37 PDT

With the test program on 64-bit Linux I could not reproduce the bug from the
comment 4 but I do see assert from the comment 0 after bumping the number of
threads to 1000. The assert is indeed rare, about 2-3% of all runs and I could
not reproduce it under GDB. On the other hand, good old printfs have shown what
was going on. The problem comes from the following code in js_NewContext:

 JS_LOCK_GC(rt);
 for (;;) {
 first = (rt->contextList.next == &rt->contextList);
 if (rt->state == JSRTS_UP) {
 JS_ASSERT(!first);

 /* Ensure that it is safe to update rt->contextList below. */
 js_WaitForGC(rt);
 break;
 }
...
 JS_WAIT_CONDVAR(rt->stateChange, JS_NO_TIMEOUT);
 }
 JS_APPEND_LINK(&cx->link, &rt->contextList);

45	

Possible	
 buggy	
 schedule	
 from	
 bug	
 report	

•  Shared	
 variables	
 involved	
 in	
 the	
 bug:	
 	

•  rt-­‐>state,	
 rt-­‐>gcLock,	
 rt-­‐>gcThread	

•  Reschedule	
 threads	
 when	
 accessing	
 them.	

46	

ExploiEng	
 programmer’s	
 insights	
 about	
 bug	

// Test in Concurrit DSL!
!
1: TC = WAIT_FOR_THREAD(ENTERS JS_NewContext)!
!
2: TA = WAIT_FOR_DISTINCT_THREAD(ENTERS JS_DestroyContext)!
!
3: TB = WAIT_FOR_DISTINCT_THREAD(ENTERS JS_DestroyContext)!
!
4: LOOP UNTIL TA, TB, TC COMPLETE {!
!
5: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
6: RUN T UNTIL NEXT EVENT!
 }!

47	

ExploiEng	
 programmer’s	
 insights	
 about	
 bug	

// Test in Concurrit DSL!
!
1: TC = WAIT_FOR_THREAD(ENTERS JS_NewContext)!
!
2: TA = WAIT_FOR_DISTINCT_THREAD(ENTERS JS_DestroyContext)!
!
3: TB = WAIT_FOR_DISTINCT_THREAD(ENTERS JS_DestroyContext)!
!
4: LOOP UNTIL TA, TB, TC COMPLETE {!
!
5: BACKTRACK HERE WITH T IN [TA, TB, TC]!
!
6: RUN T UNTIL READS OR WRITES &rt->state, &rt->gcLock, !
 OR &rt->gcThread!
 }!

...	
 ...	

...	

...	

...	

...	
 ...	
 ...	
 ...	
 ...	

Read	

rt-­‐>state	

Write	

rt-­‐>gcThread	

Read	

rt-­‐>gcLock	

Read	

rt-­‐>gcThread	

Write	

rt-­‐>state	

Read	

rt-­‐>gcLock	

Write	

rt-­‐>state	

Write	

rt-­‐>state	
 ...	

...	

...	

Enter	
 JS_DestroyContext	

Enter	
 JS_DestroyContext	

Enter	
 JS_NewContext	
 TC!

TA!

TB!

Result:	

~	
 2000	
 schedules	

Asser&on	
 failure	

ader	
 2	
 hours!	

48	

Possible	
 buggy	
 schedule	
 from	
 bug	
 report	

[reply] [-] [reply] [-]Comment 5

[reply] [-] [reply] [-]Comment 6

"../jsgc.cpp", ln=2682) at ../jsutil.cpp:68
#1 0x00299e26 in JS_CallTracer (trc=0xb0bace84, thing=0x39088, kind=2) at
../jsgc.cpp:2682
#2 0x00264aca in js_pinned_atom_tracer (table=0x34be4, hdr=0x80fe00, number=0,
arg=0xb0bace84) at ../jsatom.cpp:551
#3 0x00274548 in JS_DHashTableEnumerate (table=0x34be4, etor=0x264a12
<js_pinned_atom_tracer>, arg=0xb0bace84) at ../jsdhash.cpp:742
#4 0x00264b52 in js_TraceAtomState (trc=0xb0bace84, allAtoms=0) at
../jsatom.cpp:566
#5 0x0029ba23 in js_TraceRuntime (trc=0xb0bace84, allAtoms=0) at
../jsgc.cpp:3147
#6 0x0029c259 in js_GC (cx=0x50e6c0, gckind=GC_NORMAL) at ../jsgc.cpp:3562
#7 0x00266e77 in js_DestroyContext (cx=0x50e6c0, mode=JSDCM_FORCE_GC) at
../jscntxt.cpp:541
#8 0x002506db in JS_DestroyContext (cx=0x50e6c0) at ../jsapi.cpp:1089
#9 0x00001eb2 in testfunc (ignored=0x0) at
/Users/jason/dev/moz/spidermonkey-1.8/testapp.cpp:16
#10 0x9169b6f5 in _pthread_start ()
#11 0x9169b5b2 in thread_start ()

Igor Bukanov 2009-03-09 17:47:12 PDT

At least one problem that I can see from the code is that js_GC does the check:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
 return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Igor Bukanov 2009-03-10 07:55:37 PDT

With the test program on 64-bit Linux I could not reproduce the bug from the
comment 4 but I do see assert from the comment 0 after bumping the number of
threads to 1000. The assert is indeed rare, about 2-3% of all runs and I could
not reproduce it under GDB. On the other hand, good old printfs have shown what
was going on. The problem comes from the following code in js_NewContext:

 JS_LOCK_GC(rt);
 for (;;) {
 first = (rt->contextList.next == &rt->contextList);
 if (rt->state == JSRTS_UP) {
 JS_ASSERT(!first);

 /* Ensure that it is safe to update rt->contextList below. */
 js_WaitForGC(rt);
 break;
 }
...
 JS_WAIT_CONDVAR(rt->stateChange, JS_NO_TIMEOUT);
 }
 JS_APPEND_LINK(&cx->link, &rt->contextList);

Fixed,	
 known	
 schedule	

for	
 threads	
 A	
 and	
 B	

Unknown	
 schedule	
 	

for	
 A	
 and	
 C	

Setup	

49	

Final	
 test	

// Test in Concurrit DSL!
!
TC = WAIT_FOR_THREAD(!
 ENTERS JS_NewContext)!
!
TA = WAIT_FOR_DISTINCT_THREAD(!
 ENTERS JS_DestroyContext)!
!
TB = WAIT_FOR_DISTINCT_THREAD(!
 ENTERS JS_DestroyContext)!
!
RUN TA UNTIL READS &rt->state IN js_GC!
!
RUN TB UNTIL COMPLETES!
!
RUN TA UNTIL WRITES &rt->gcThread IN js_GC!
!
LOOP UNTIL TA, TC COMPLETE {!
!
 BACKTRACK HERE WITH T IN [TA, TC]!
!
 RUN T UNTIL READS OR WRITES MEMORY!
}!

[reply] [-] [reply] [-]Comment 5

[reply] [-] [reply] [-]Comment 6

"../jsgc.cpp", ln=2682) at ../jsutil.cpp:68
#1 0x00299e26 in JS_CallTracer (trc=0xb0bace84, thing=0x39088, kind=2) at
../jsgc.cpp:2682
#2 0x00264aca in js_pinned_atom_tracer (table=0x34be4, hdr=0x80fe00, number=0,
arg=0xb0bace84) at ../jsatom.cpp:551
#3 0x00274548 in JS_DHashTableEnumerate (table=0x34be4, etor=0x264a12
<js_pinned_atom_tracer>, arg=0xb0bace84) at ../jsdhash.cpp:742
#4 0x00264b52 in js_TraceAtomState (trc=0xb0bace84, allAtoms=0) at
../jsatom.cpp:566
#5 0x0029ba23 in js_TraceRuntime (trc=0xb0bace84, allAtoms=0) at
../jsgc.cpp:3147
#6 0x0029c259 in js_GC (cx=0x50e6c0, gckind=GC_NORMAL) at ../jsgc.cpp:3562
#7 0x00266e77 in js_DestroyContext (cx=0x50e6c0, mode=JSDCM_FORCE_GC) at
../jscntxt.cpp:541
#8 0x002506db in JS_DestroyContext (cx=0x50e6c0) at ../jsapi.cpp:1089
#9 0x00001eb2 in testfunc (ignored=0x0) at
/Users/jason/dev/moz/spidermonkey-1.8/testapp.cpp:16
#10 0x9169b6f5 in _pthread_start ()
#11 0x9169b5b2 in thread_start ()

Igor Bukanov 2009-03-09 17:47:12 PDT

At least one problem that I can see from the code is that js_GC does the check:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
 return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Igor Bukanov 2009-03-10 07:55:37 PDT

With the test program on 64-bit Linux I could not reproduce the bug from the
comment 4 but I do see assert from the comment 0 after bumping the number of
threads to 1000. The assert is indeed rare, about 2-3% of all runs and I could
not reproduce it under GDB. On the other hand, good old printfs have shown what
was going on. The problem comes from the following code in js_NewContext:

 JS_LOCK_GC(rt);
 for (;;) {
 first = (rt->contextList.next == &rt->contextList);
 if (rt->state == JSRTS_UP) {
 JS_ASSERT(!first);

 /* Ensure that it is safe to update rt->contextList below. */
 js_WaitForGC(rt);
 break;
 }
...
 JS_WAIT_CONDVAR(rt->stateChange, JS_NO_TIMEOUT);
 }
 JS_APPEND_LINK(&cx->link, &rt->contextList);

Fixed,	
 known	
 schedule	

for	
 threads	
 A	
 and	
 B	

Unknown	
 schedule	
 	

for	
 A	
 and	
 C	

Setup	

50	

Final	
 test	

Triggers	
 asser&on	
 failure	

in	
 <	
 30	
 thread	
 schedules	
 +	

[reply] [-] [reply] [-]Comment 5

[reply] [-] [reply] [-]Comment 6

"../jsgc.cpp", ln=2682) at ../jsutil.cpp:68
#1 0x00299e26 in JS_CallTracer (trc=0xb0bace84, thing=0x39088, kind=2) at
../jsgc.cpp:2682
#2 0x00264aca in js_pinned_atom_tracer (table=0x34be4, hdr=0x80fe00, number=0,
arg=0xb0bace84) at ../jsatom.cpp:551
#3 0x00274548 in JS_DHashTableEnumerate (table=0x34be4, etor=0x264a12
<js_pinned_atom_tracer>, arg=0xb0bace84) at ../jsdhash.cpp:742
#4 0x00264b52 in js_TraceAtomState (trc=0xb0bace84, allAtoms=0) at
../jsatom.cpp:566
#5 0x0029ba23 in js_TraceRuntime (trc=0xb0bace84, allAtoms=0) at
../jsgc.cpp:3147
#6 0x0029c259 in js_GC (cx=0x50e6c0, gckind=GC_NORMAL) at ../jsgc.cpp:3562
#7 0x00266e77 in js_DestroyContext (cx=0x50e6c0, mode=JSDCM_FORCE_GC) at
../jscntxt.cpp:541
#8 0x002506db in JS_DestroyContext (cx=0x50e6c0) at ../jsapi.cpp:1089
#9 0x00001eb2 in testfunc (ignored=0x0) at
/Users/jason/dev/moz/spidermonkey-1.8/testapp.cpp:16
#10 0x9169b6f5 in _pthread_start ()
#11 0x9169b5b2 in thread_start ()

Igor Bukanov 2009-03-09 17:47:12 PDT

At least one problem that I can see from the code is that js_GC does the check:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
 return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Igor Bukanov 2009-03-10 07:55:37 PDT

With the test program on 64-bit Linux I could not reproduce the bug from the
comment 4 but I do see assert from the comment 0 after bumping the number of
threads to 1000. The assert is indeed rare, about 2-3% of all runs and I could
not reproduce it under GDB. On the other hand, good old printfs have shown what
was going on. The problem comes from the following code in js_NewContext:

 JS_LOCK_GC(rt);
 for (;;) {
 first = (rt->contextList.next == &rt->contextList);
 if (rt->state == JSRTS_UP) {
 JS_ASSERT(!first);

 /* Ensure that it is safe to update rt->contextList below. */
 js_WaitForGC(rt);
 break;
 }
...
 JS_WAIT_CONDVAR(rt->stateChange, JS_NO_TIMEOUT);
 }
 JS_APPEND_LINK(&cx->link, &rt->contextList);

// Test in Concurrit DSL!
!
TC = WAIT_FOR_THREAD(!
 ENTERS JS_NewContext)!
!
TA = WAIT_FOR_DISTINCT_THREAD(!
 ENTERS JS_DestroyContext)!
!
TB = WAIT_FOR_DISTINCT_THREAD(!
 ENTERS JS_DestroyContext)!
!
RUN TA UNTIL READS &rt->state IN js_GC!
!
RUN TB UNTIL COMPLETES!
!
RUN TA UNTIL WRITES &rt->gcThread IN js_GC!
!
LOOP UNTIL TA, TC COMPLETE {!
!
 BACKTRACK HERE WITH T IN [TA, TC]!
!
 RUN T UNTIL READS OR WRITES MEMORY!
}!

Software Under Test!
......!
......!

(Add	
 to	
 regression	
 test	
 suit)	

•  ImplementaEon:	
 DSL	
 embedded	
 in	
 C++	

•  Prototype:	
 h+p://code.google.com/p/concurrit/	

–  Wrote	
 concise	
 tests	
 for	
 (real/manually-­‐inserted)	
 bugs	
 in	

well-­‐known	
 benchmarks	

•  Reproducing	
 bugs	
 	

	
 using	
 <	
 20	
 lines	
 of	
 DSL	
 code,	
 ader	
 <	
 30	
 schedules	

–  Inspect:	
 bbuf,	
 bzip2,	
 pbzip2,	
 pfscan	

– PARSEC:	
 dedup,	
 streamcluster	

– RADBench:	
 SpiderMonkey	
 1/2,	
 Mozilla	
 NSPR	
 1/2/3	

• Ongoing:	
 Apache	
 hgpd,	
 Chromium,	
 Memcached	

–  Can	
 write	
 various	
 model	
 checking	
 algorithms	
 (next	
 slide)	

	

51	

ImplementaEon/EvaluaEon	

52	

Default	
 search	
 policies	

EXPLORE_THREADS_UNTIL_COMPLETION(THREADS) {!
 LOOP UNTIL ALL THREADS COMPLETE {!
 BACKTRACK HERE WITH T IN THREADS!
 RUN T UNTIL COMPLETION!
 }!
}	

EXPLORE_ALL_SCHEDULES(THREADS) {!
 LOOP UNTIL ALL THREADS COMPLETE {!
 BACKTRACK HERE WITH T IN THREADS!
 RUN T UNTIL NEXT EVENT!
 }!
}	

EXPLORE_TWO_CONTEXT_BOUNDED_SCHEDULES(THREADS) {!
 BACKTRACK HERE WITH T1 IN THREADS!
 BACKTRACK HERE LOOP NONDETERMINISTICALLY {!
 RUN T1 UNTIL NEXT EVENT!
 }!
!
 BACKTRACK HERE WITH T2 IN [THREADS EXCEPT T1]!
 BACKTRACK HERE LOOP NONDETERMINISTICALLY {!
 RUN T2 UNTIL NEXT EVENT!
 }!
!
 EXPLORE_THREADS_UNTIL_COMPLETION(THREADS)!
}	

53	

PosiEoning	
 Concurrit:	
 Usage	
 scenarios	

Insert	
 sleeps:	

Explore	
 one	
 schedule	

Model	
 checking:	

Explore	
 all	
 schedules	

Concurrit	

Control	
 user-­‐defined	
 events	

•  Portable,	
 tes&ng	
 library	

•  Manual	
 instrumenta&on	

•  Generate	
 exact/perfect	

schedule	

Control	
 all	
 operaEons	

•  Exhaus&ve	
 tes&ng	
 tool	

•  Automated	

instrumenta&on	

•  Generate	
 all	
 schedules	

54	

Unit-­‐tesEng	
 programs	
 with	
 Concurrit	

SoQware	
 Under	
 Test	
 (SUT)	
 	
 Test	
 in	
 Concurrit	
 DSL	

Runs	
 concurrently	
 with	
 SUT	

!
 !
!
 !
!
 !
!
 !
!
 !
!
 !

Thread A!

Thread B!
!

Thread C!
!
testfunc() {!
 JSContext *cx = JS_NewContext(rt, 0x1000);!
 if (cx) {!
 JS_BeginRequest(cx);!
 JS_DestroyContext(cx);!
 }!
}!
! Unblock	
 thread	

Send	
 event	
 	

and	
 block	

Instrumented	
 to	
 control	

55	

Ongoing	
 work:	
 IntegraEon	
 tesEng	

Controlling	
 mulE-­‐process/distributed	
 applicaEons	

Concurrit	
 monitor	
 process	

// Test in Concurrit DSL!
!
 !
!

Apache	
 web	
 server	

// Server threads!
// handling requests!
!
 !
!

Request	
 process	
 1	

// Threads sending !
// requests to server!
!
 !
!

Request	
 process	
 2	

// Threads sending !
// requests to server!
!
 !
!

Events	

Events	

Events	

56	

Approaches	
 to	
 controlling	
 thread	
 schedules	

Test	
 run:	
 	
 A	
 set	
 of	
 execu&ons	
 of	
 the	
 test	
 driver.	

Success:	
 At	
 least	
 one	
 execu&on	
 in	
 the	
 run	
 hits	
 the	
 bug.	

%	
 Rate	
 of	
 success	
 (Robustness)	

Exhaust.	

model	

check	

Run	
 1000X	

&mes	
 	

(no	
 control)	

Run	
 once	
 Ideal	
 Test	

Run	
 100X	

&mes	
 with	

manual	

control	

(sleeps)	

N
um

be
r	
 o

f	
 e
xe
cu
&o

ns
	
 in
	
 e
ac
h	

te
st
	
 ru

n	

100	

Our	
 target	

Explore	

<	
 1000	

execs.	

and	
 robust	

