NN

BERKELEY PARLAB

Electrical Engineering and
Computer Sciences

CONCURRIT: Testing Concurrent Programs

with Programmable State-Space Exploration
(A DSL for Writing Concurrent Tests)

Jacob Burnim, Tayfun Elmas*
George Necula, Koushik Sen
University of California, Berkeley

HotPar 2012

How to write an xUnit-like test for a

concurrent program?
* Consider:

— Mozilla SpiderMonkey JavaScript Engine

e Used in Firefox browser
e 121K lines of code

— Want to test JS NewContext, JS DestroyContext

 Contain 2K < lines of code

How to write an xUnit-like test for a
sequential program?
* Fix inputs =» Deterministic test
— If there is a bug, every run manifests it!

// check if any assertion fails
test_Context () {

JSContext *cx = JS NewContext(rt, 0x1000);
if (cx) {

JS DestroyContext(cx);

}
}

How to write an xUnit-like test for a

concurrent program?
* Nondeterminism due to thread schedules
— Hard to specify and control schedule!

// check if any assertion fails
test_Context () {

. // create 10 threads to run testfunc

}

testfunc() {
JSContext *cx = JS_NewContext(rt, 0x1000);

if (cx) {

JS DestroyContext (cx);

}
}

Approaches to testing concurrent programs

1. Stress testing: No control over thread schedules
=>» No guarantee about generated schedules

// check if any assertion fails
test_Context () {
Loop 1000 times {
... // create 100 threads to run testfunc
}
}

testfunc() {
JSContext *cx = JS_NewContext(rt, 0x1000);

if (cx) {

JS DestroyContext (cx);

}
}

Approaches to testing concurrent programs

1. Stress testing: No control over thread schedules
=>» No guarantee about generated schedules

2. Model checking: Enumerate all possible schedules

— Too many schedules
=>» Not scalable for large programs!

Missing: Programmer has no direct control
on thread schedule
* Key to effective and efficient testing

Programmers have often insights/ideas
about which schedules to look at

Wan-Teh Chang 2002-08-29 16:08:33 PDT Description [reply] [-] [reply] [-]

This bug affects the pthreads version of NSPR, which
is used on most Unix platforms.

There is a race condition when we use PR_Interrupt to DO NOT READ!
interrupt PR _WaitCondVar.

Suppose thread A is calling PR_WaitCondVar and thread
B is interrupting thread A. The following event
sequence 1is problematic.

Thread A Thread B

Test its interrupt flag

Set thred->waiting to cvar

Set thread A's interrupt
flag

Call pthread cond broadcast
on thread A's 'waiting'

cvar

Call pthread_cond_wait

Thread A misses the broadcast and blocks in
pthread_cond_wait forever.

This can be reproduced with the 'join' test program,
at least on Red Hat Linux 6.2.

Programmers have often insights/ideas
about which schedules to look at

paul.barnetta@smx.co.nz 2009-02-04 13:54:41 PST Description [reply] [-] [reply] [-]

I have a multi-threaded application that periodically crashes. I maintain a
pool of JSContexts: as they're requested from the pool JS SetContextThread and
JS BeginRequest are called; when they're returned JS EndRequest and
JS ClearContextThread are called.

- DO NOT READ!

The crashes consistently occurs inside js GC in the following code block:

while ((acx = js ContextIterator(rt, JS FALSE, &iter)) != NULL) {
if (lacx->thread || acx->thread == cx->thread)
continue;
memset (acx->thread->gcFreelLists, 0, sizeof acx->thread->gcFreelLists);
GSN_CACHE CLEAR(&acx->thread->gsnCache);

}

acx always appears to be valid but acx->thread == NULL when the application
crashes (which may be in the memset or GSN_CACHE CLEAR line). This shouldn't
occur as these lines should be skipped if (!acx->thread)..

What I suspect is happening is that one thread is calling JS GC while a second
is calling JS EndRequest and JS ClearContextThread (in returning a context to

the pool). The call to JS GC will block until JS EndRequest finishes.. JS GC
then resumes.. but while JS GC is running JS ClearContextThread also runs (no
locking is done in this?),|modifying the value of acx->thread |as the code above
runs. acx->thread becomes NULL just before it gets dereferenced and the
application exits.

Programmers have often insights/ideas
about which schedules to look at

Igor Bukanov 2009-03-09 17:47:12 PDT Comment 5 [reply] [-] [reply] [-]

At least one problem that I can see from the code is that js GC does the check:

if (rt->state != JSRTS UP && gckind != GC_LAST CONTEXT) DO NOT READ!
return; .

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js DestroyContext and thread C calls js NewContext.

Fixed, known schedule for threads A and B
First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
PO Unknown schedule for A and C
Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since

rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Inserting sleeps to enforce a schedule

Sleeps:

* Lightweight and convenient tool for programmer

 BUT: Ad hoc, not reliable for long, complex schedules.

=» Need: Formal and robust way to describe schedules!

With the patched NSPR library, run the 'join' test.
The events will happen at the following time instants:

Thread A

TO0: Test its interrupt flag

T0: Set thred->waiting to
cvar

T0: Sleep 2 seconds

T2: Call pthread_cond_wait

Thread B

T0: Sleep 1 second

Tl: Set thread A's interrupt
flag

Tl: Call pthread cond broadcast
on thread A's 'waiting' cvar

10

Case study: A bug in SpiderMonkey (1.8rc1)

* |n RADBench [Jalbert, Sen, HotPar’10]

DO NOT READ!

I have a multi-threaded application that periodically crashes, giving the
following assertion error:

$./a.out

Assertion failure: rt->state == JSRTS_UP || r
jscntxt.cpp:465

I've attached a test program which del
spawns many threads, each of which create

$./a.out
(5. meaos), ooty aneisioniny e | ASSertion failure: rt->state == JSRTS UP || rt->state == JSRTS_LAUNCHING, at

and showing a race condition in the code?

Reproducible: Always j scntxt. Cpp . 4 6 5

Steps to Reproduce:
Below is a simple application that exhibits

me) when run directly from the command line:

[L—

#include <stdlib.h>

#include <pthread.h> #de f ine THREADS 1 O 0

#include "jsapi.h"
e static void * testfunc(void *ignored) {
static void * testfunc(void *ignored)

JsContext *cx = JS_NewContext(rt, 0x10
if (cx) {

s JSContext *cx = JS NewContext(rt, 0x1000);
— if (cx) {
— JS_BeginRequest (cx);

rt = JS_NewRuntime(0x100000);

P JS DestroyContext(cx);

return 1;

/* Uncommenting this to guarantee there's always at least
* one context in the runtime prevents this problem. */
// JsContext *cx = JS_NewContext(rt, 0x1000);

int i;
pthread_t thread[THREADS];

for (i = 0; i < THREADS; i++) { t U
or pihreadizreate(&threa;[i], NULL, testfunc, NULL); return N LL;

}
for (i = 0; i < THREADS; i++) { }
pthread_join(thread[i], NULL);

}

return 0;
}
[—
It seems to be very sensitive to timings as I have trouble reproducing the I I
issue in gdb. For me to trigger it there I just need create/destroy more

contexts per thread, but YMMV.

[L—

Possible buggy schedule from bug report

DO NOT READ!
Igor Bukanov 2009-03-09 17:47:12 PDT Comment 5 [reply] [-] [reply] [-]

At least one problem that I can see from the code is that js GC does the check:

if (rt->state != JSRTS UP && gckind != GC_LAST CONTEXT)
return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js DestroyContext and thread C calls js NewContext.

Fixed, known schedule for threads A and B
First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
PO Unknown schedule for Aand C
Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since

rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial

nd.it will h ns the GC.|This may lead precisely
to the first stack trace from the comment 4.

Concurrit: A DSL for writing

concurrent tests

= = e

1
Igor Bukanov 2009-03-09 17:47:12 PDT Comment 5 [reply] [-] [reply] [-]I

At least one problem that I can see from the code is that js_GC does the check:
if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)
return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js_DestroyContext and thread C calls js_NewContext.

"Insights/ideas about
thread schedules

Now the thread C enters the picture. It discovers
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

under the GC lock in 1
i 1

1
1
1
1

> +

Software Under Test

#define THREADS 100

static void * testfunc(void *ignored) {

JsContext *cx = JS_NewContext(rt, 0x1000);

if (ecx) {
JS_BeginRequest(cx);
JS_DestroyContext(cx);
}

return NULL;

Test in
Concurrit DSL

-

=

Systematically
explore
all-and-only
thread schedules
specified by DSL

Specify a set of schedules in formal,

concise, and convenient way

13

Unit-testing programs with Concurrit

(What about integration tests?: Wait for conclusion)

Software Under Test (SUT) Test in Concurrit DSL

Instrumented to control Runs concurrently with SUT

Thread A

Thread B

|
Send event N cieeenn...

testfunc() {
JSContext *cx = JS_ NewContext (1 and bIOCk
if (cx) {
JS_BeginRequest(cx);
JS_DestroyContext(cx);

Thread C

Unblock thread |

- }

}

Kinds of events: Memory read/write, function enter/return, function call,

end of thread, at particular source line, user-defined 14

Unit-testing programs with Concurrit

(What about integration tests?: Wait for conclusion)

Software Under Test (SUT)

Instrumented to control

Thread A
Thread B
|
Thread C
Send event
estfunc {
‘ JSContégct *cx = JS_ NewContext (1 and bIOCk

if (cx) {
JS_BeginRequest(cx);
JS DestroyContext(cx);

i }

}

Concurrit monitor
Runs concurrently with SUT

// Test in Concurrit DSL

Unblock thread

Kinds of events: Memory read/write, function enter/return, function call,
end of thread, at particular source line, user-defined 15

Outline

* Bug report for Mozilla SpiderMonkey
* Write tests in Concurrit DSL to generate buggy schedule
E>Simple schedules:
* Few schedules BUT not manifesting bug
— All schedules:
* Manifests bug BUT too many schedules
— Target buggy schedule in bug report

* Few schedules AND manifests bug

16

Possible buggy schedule from bug report

Igor Bukanov 2009-03-09 17:47:12 PDT Comment 5 [reply] [-] [reply] [-]

At least one problem that I can see from the code is that js GC does the check:

if (rt->state != JSRTS UP && gckind != GC _LAST CONTEXT)
return;

outside the GC lock.| Now suppose there are 3 threads, A, B, C.| Threads A and B
calls js DestroyContext and thread C calls js NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since

rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely

to the first stack trace from the comment 4. 17

First test: Run each thread sequentially until completion

(No interleaving)

// Test in Concurrit DSL

l: TA, TB, TC = WAIT FOR _DISTINCT THREADS()
2: LOOP UNTIL TA, TB, TC COMPLETE {

3: WITH T IN [TA, TB, TC]

4: RUN T UNTIL COMPLETES
}

18

First test: Run each thread sequentially until completion
(No interleaving)

// Test in Concurrit DSL

l: TA, TB, TC = WAIT FOR _DISTINCT THREADS()

2: LOOP UNTIL TA, TB, TC COMPLETE ({
3: WITH T IN [TA, TB, TC]

4: RUN T UNTIL COMPLETES
}

Wait until 3 distinct threads
sending events

TA TB TC
> > >

19

First test: Run each thread sequentially until completion
(No interleaving)

// Test in Concurrit DSL

l: TA, TB, TC = WAIT FOR _DISTINCT THREADS()

2: LOOP UNTIL TA, TB, TC COMPLETE ({

3: WITH T IN [TA, TB, TC]

4: RUN T UNTIL COMPLETES
}

Loop until all 3 threads
complete

TA TB TC
> > >

20

First test: Run each thread sequentially until completion
(No interleaving)

// Test in Concurrit DSL

l: TA, TB, TC = WAIT FOR _DISTINCT THREADS()

2: LOOP UNTIL TA, TB, TC COMPLETE ({

3: WITH T IN [TA, TB, TC]

4: RUN T UNTIL COMPLETES
}

Pick one of the threads

TA TB TC
> > >

'I"?/Q (") Backtrack/choice point

21

First test: Run each thread sequentially until completion
(No interleaving)

// Test in Concurrit DSL

l1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()
Run selected thread

2: LOOP UNTIL TA, TB, TC COMPLETE ({ unt—ll |t Completes
3: WITH T IN [TA, TB, TC] TA> ']:'B> TC>
4: ; RUN T UNTIL COMPLETES 'I?/Q QBacktrack/choice point

/
4

Thread /
completef

22

First test: Run each thread sequentially until completion
(No interleaving)

// Test in Concurrit DSL

l: TA, TB, TC = WAIT FOR _DISTINCT THREADS() Ple one Of the threadS

2: LOOP UNTIL TA, TB, TC COMPLETE ({

3: WITH T IN [TA, TB, TC] TA

TB TC
> > >
4: RUN T UNTIL COMPLETES 'I"?/Q QBacktrack/choice point

/
4

}
Thread /
completef

-

23

First test: Run each thread sequentially until completion
(No interleaving)

// Test in Concurrit DSL

l1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()
Run selected thread

2: LOOP UNTIL TA, TB, TC COMPLETE { until it completes
3: WITH T IN [TA, TB, TC]
4: RUN T UNTIL COMPLETES Q

J 4

’
Thread /
completef

’
im

Thread
completes

24

First test: Run each thread sequentially until completion
(No interleaving)

// Test in Concurrit DSL

l1: TA, TB, TC = WAIT FOR DISTINCT THREADS () P.
- - ick one of the threads

2: LOOP UNTIL TA, TB, TC COMPLETE ({

3: WITH T IN [TA, TB, TC] TA) TB) TC)

4: RUN T UNTIL COMPLETES Q

}

(") Backtrack/choice point

4

/
4

Thread /
completef

TC

<-—€—)

Thread
completes

(&

TB

25

First test: Run each thread sequentially until completion
(No interleaving)

// Test in Concurrit DSL

l1: TA, TB, TC = WAIT FOR DISTINCT THREADS ()
-7 - Run selected thread

2: LOOP UNTIL TA, TB, TC COMPLETE ({ until it completes

3: WITH T IN [TA, TB, TC] .I.A> TB) TC)

4: RUN T UNTIL COMPLETES Q

(") Backtrack/choice point

}

4

/
4

Thread /
completef

TC

<-—€—)

Thread

completes

(&

TB

Thread
completes

26

<<€

First test: Run each thread sequentially until completion
(No interleaving)

// Test in Concurrit DSL

l: TA, TB, TC = WAIT FOR _DISTINCT THREADS() Ple 3 d|fferent thread

when backtracked

TB, TC] TA

2: LOOP UNTIL TA, TB, TC COMPLETE ({
3: BACKTRACK HERE WITH T IN [TA,
4: RUN T UNTIL COMPLETES

}

TB TC
> > >

'I"?/Q (") Backtrack/choice point

/
4

Thread /
completef

TC

<-—€—)

Thread
completes

(&

TB

Thread
completes

27

<<€

First test: Run each thread sequentially until completion
(No interleaving)

// Test in Concurrit DSL

l: TA, TB, TC = WAIT FOR _DISTINCT THREADS() Ple 3 d|fferent thread

when backtracked

TB, TC] TA

2: LOOP UNTIL TA, TB, TC COMPLETE ({
3: BACKTRACK HERE WITH T IN [TA,
4: RUN T UNTIL COMPLETES

}

TB TC
> > >

'I"?/%B (") Backtrack/choice point
4

Thread /'

completef

TC

<-—€—)

Thread
completes

(&

TB

Thread
completes

28

<<€

First test: Run each thread sequentially until completion
(No interleaving)

// Test in Concurrit DSL

l1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()
Run selected thread

2: LOOP UNTIL TA, TB, TC COMPLETE .1 s
{ until it completes
3: BACKTRACK HERE WITH T IN [TA, TB, TC] TA TR TC
> > >
4: 7 RUN T UNTIL COMPLETES 'I"?/%B QBacktrack/choice point
/’ \\

Thread / N Thread
completef \:mpletes

TC

<-—€—)

Thread
completes

(&

TB

Thread
completes

29

<<€

First test: Run each thread sequentially until completion
(No interleaving)

// Test in Concurrit DSL

l: TA, TB, TC = WAIT FOR _DISTINCT THREADS()

2: LOOP UNTIL TA, TB, TC COMPLETE ({

Pick a different thread
when backtracked

3: BACKTRACK HERE WITH T IN [TA,

TB, TC] TA> TB) Tc>

4: RUN T UNTIL COMPLETES
}

'I"?/%B (") Backtrack/choice point
4 \

Thread 4” N Thread

completef completes

TC
TC

<-—€—)

Thread
completes

(&

TB

Thread
completes

30

<<€

First test: Run each thread sequentially until completion

(No interleaving)

// Test in Concurrit DSL

l: TA, TB, TC = WAIT FOR _DISTINCT THREADS()
2: LOOP UNTIL TA, TB, TC COMPLETE ({

3: BACKTRACK HERE WITH T IN [TA, TB, TC]
4: RUN T UNTIL COMPLETES

}

completes

Threadf

TC

<-—€—)

Thread
completes

(&

Thread
completes

<<€

TB

Run selected thread
until it completes

TA TB TC
> > >
'I"?/%B (") Backtrack/choice point
/ \
‘ N Thread
completes
TC
1
1
Thread
completes

31

First test: Run each thread sequentially until completion

(No interleaving)

// Test in Concurrit DSL

l: TA, TB, TC = WAIT FOR _DISTINCT THREADS()
2: LOOP UNTIL TA, TB, TC COMPLETE ({

3: BACKTRACK HERE WITH T IN [TA, TB, TC]
4: RUN T UNTIL COMPLETES

}

completes

Threadf

TC

<-—€—)

Thread
completes

(&

Thread
completes

<<€

TB

Pick a different thread
when backtracked

TA TB TC
> > >

'I"?/%B (") Backtrack/choice point
s’ N

N Thread
completes

TC

Thread
completes

€<~

TA

<€

32

First test: Run each thread sequentially until completion

(No interleaving)

// Test in Concurrit DSL

l: TA, TB, TC = WAIT FOR _DISTINCT THREADS()
2: LOOP UNTIL TA, TB, TC COMPLETE {
3: BACKTRACK HERE WITH T IN [TA, TB, TC]
4: RUN T UNTIL COMPLETES
}
Thread /
completef

<-—€—)

Thread
completes

(&

Thread
completes

<<€

TC

TB

Run selected thread
until it completes

TA TB TC
> > >

'I"?/%B (") Backtrack/choice point
s’ N

N Thread
completes

TC

Thread
completes

€<~

TA

Thread
completes

33

«— <€

First test: Run each thread sequentially until completion

(No interleaving]

// Test in Concurrit DSL

l: TA, TB, TC = WAIT FOR _DISTINCT THREADS()
2: LOOP UNTIL TA, TB, TC COMPLETE {

3: BACKTRACK HERE WITH T IN [TA, TB, TC]

4: RUN T UNTIL COMPLETES

v

Result:
6 schedules
No assertion failure!

U4
4 \\

TA TB TC
> > >

(") Backtrack/choice point

Thread / i N Thread
completef completes

v

4

Thread e

completes/'
O Thread
completes

/
4

/
/ Thread
completes

Thread
completes

— - e—€—<-

-
?,

14
Y Thread
‘l, completes

N
N

S Thread
completes
Thread
completes C\

N
N

N
Threat&l
completes

Thread 3 4

completes

«—<C-—— <~

Second test: Run each thread sequentially
until it returns from function

// Test in Concurrit DSL
l1: TA, TB, TC = WAIT_FOR_DISTINCT_THREADS()
2: LOOP UNTIL TA, TB, TC COMPLETE ({

3: BACKTRACK HERE WITH T IN [TA, TB, TC]

4: RUN T UNTIL RETURNS FROM JS NewContext,
JS BeginRequest, OR JS DestroyContext

FuncRetuy

FuncReturn

/ \ FuncRetu

l

R /:ncReturn

Result:
< 50 schedules
No assertion failure!

TA TB TC
> > >

(") Backtrack/choice point

\mcReturn

FuncReturn

\

\
\ FuncReturn

uncReturn

/N

FuncReturn s
- 35 \

'y

Outline

* Bug report for Mozilla SpiderMonkey
* Write tests in Concurrit DSL to generate buggy schedule
— Simple schedules
* Few schedules BUT not manifesting bug
m) All schedules
* Manifests bug BUT too many schedules
— Target buggy schedule in bug report

* Few schedules AND manifests bug

36

First test: Run each thread sequentially until completion

(No interleaving)

// Test in Concurrit DSL

1:

2:

3:

4:

TA, TB, TC = WAIT_FOR_DISTINCT_ THREADS()
LOOP UNTIL TA, TB, TC COMPLETE ({
BACKTRACK HERE WITH T IN [TA, TB, TC]

RUN T UNTIL COMPLETES

37

Generate all thread schedules

// Test in Concurrit DSL Result:

> 100,000 schedules

Assertion failure
2: LOOP UNTIL TA, TB, TC COMPLETE ({ aftera mght'

l: TA, TB, TC = WAIT_FOR _DISTINCT THREADS()

3: BACKTRACK HERE WITH T IN [TA, TB, TC] TA

TB TC
> > >

4: RUN T UNTIL NEXT EVENT _ _
(") Backtrack/choice point

O

-
A \1/%\: >N

38

What is different from
(traditional) model checking?

[>1. Cannot control/instrument everything!
 Must tolerate uncontrolled non-determinism

* Backtrack-and-replay-prefix may fail

2. Localize the search
 To particular functions, operations, states, ...

BUT: Can express traditional model checking algorithms
* |f every operation can be controlled
* Feasible for small programs, data structures, ... 3q

Outline

* Bug report for Mozilla SpiderMonkey
* Write tests in Concurrit DSL to generate buggy schedule
— Simple schedules
* Few schedules BUT not manifesting bug
— All schedules
* Manifests bug BUT too many schedules
|:>Target buggy schedule in bug report

* Few schedules AND manifests bug

40

Possible buggy schedule from bug report

Igor Bukanov 2009-03-09 17:47:12 PDT Comment 5 [reply] [-] [reply] [-]

At least one problem that I can see from the code is that js GC does the check:

if (rt->state != JSRTS UP && gckind != GC_LAST CONTEXT)

return;
outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js DestroyContext and thread C calls js NewContext. ~
First thread A re
the last one so t] static void * testfunc(void *igno Thread C
latter skips the >

JSContext *cx =|JS NewContext|(rt, 0x1000);

if (cx) { m the
r Threads A, B JS_BeginRequest(cX); runs
t JS_DestroyContext|(cx) ;

}
At this stage the that
runs the GC and r return NULL; ate is
DOWN. }

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since

rt->state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely

to the first stack trace from the comment 4. 41

Generate all thread schedules

// Test in Concurrit DSL

l: TA, TB, TC = WAIT_FOR _DISTINCT THREADS()

2: LOOP UNTIL TA, TB, TC COMPLETE ({

3: BACKTRACK HERE WITH T IN [TA, TB, TC]
4: RUN T UNTIL NEXT EVENT
}

42

1:

2:

3:

TC = WAIT FOR_TI
TA = WAIT FOR_D

TB = WAIT FOR_D

¢ LOOP UNTIL TA,

BACKTRACK HE]

RUN T UNTIL]|

Result:

< 50,000 schedules
Assertion failure
after a few hours!

TC | Enter JS_NewContext

P

TA | Enter JS_DestroyContext

€ —— - —C -

TB | Enter JS_DestroyContext

7

Exploiting programmer’s insights about bug

// Test in Concurr

43

What is different from
(traditional) model checking?

1. Cannot control/instrument everything!
 Must tolerate uncontrolled non-determinism

* Backtrack-and-replay-prefix may fail

[>2. Localize the search
 To particular functions, operations, states, ...

BUT: Can express traditional model checking algorithms
* |f every operation can be controlled
* Feasible for small programs, data structures, ...

44

Possible buggy schedule from bug report

* Shared variables involved in the bug:
e rt->state, rt->gclLock, rt->gcThread
 Reschedule threads when accessing them.

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B
calls js DestroyContext and thread C calls js NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js _GC. The
latter skips the above check and tries to to| take the GC lock.)

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last,|sets rt->state to LANDING} runs
the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock,|setup itself as the thread |that
runs the GC and releases the GC lock to proceed with the GC when|rt->state|is
DOWN.

Now the thread C enters the picture. It discovers under the GC lock in

js NewContext that the newly allocated context is the first one. Since
|rt—>state|is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

45

Exploiting programmer’s insights about bug

//

w

o

3]

Test in Concurrit DSL

TC = WAIT_FOR_THREAD (ENTERS JS NewContext)

TA = WAIT FOR _DISTINCT THREAD (ENTERS JS DestroyContext)
TB = WAIT FOR_DISTINCT THREAD(ENTERS JS DestroyContext)

LOOP UNTIL TA, TB, TC COMPLETE ({
BACKTRACK HERE WITH T IN [TA, TB, TC]

RUN T UNTIL NEXT EVENT

46

Exploiting programmer’s insights about bug

// Test in Cd
1: TC = WAIT |
2: TA = WAIT
3: TB = WAIT|
4: LOOP UNTIL

5: BACKTRZA

6: RUN T U

Vg

Result:

~ 2000 schedules

Assertion failure

after 2 hours!

Write

rt->gcThread 4.~ g

- ~

-

[
1
I
Write
rt->state

-

A

-

rt->stat;¢"

-

Read

i
i
i
\ 4

N

TC

TA

TB

€ — G- —€-

P —

Enter JS_NewContext

Enter JS_DestroyContext

Enter JS_DestroyContext

Sso Read

*g rt->gcLock

Write

rt->state s S
7 S

1
’ 1
i 1
{ oo v N
\\\ LN N]

\n ’¢’

Read--- y2d
rt->gcLock

!

Read
S rt->gcThread

Write
rt->state

Possible buggy schedule from bug report

Igor Bukanov 2009-03-09 17:47:12 PDT Comment 5 [reply] [-] [reply] [-]

At least one problem that I can see from the code is that js GC does the check:

if (rt->state != JSRTS UP && gckind != GC _LAST CONTEXT)
return;

outside the GC lock. Now suppose there are Setup
calls js DestroyContext and thread C calls

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The
latter skips the above check and tries to to take tha CC loclk

Before this moment the thread B takes the] leed, kﬂOWﬂ SChedU|e

runtime list, discovers that it is the last

the-last-context-cleanup, runs the GC and f for th reads A and B

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is
DOWN.

o~ 1

Now the thread C enters the picture. It dis —
js_NewContext that the newly allocated conf

rt->state is DOWN, it releases the GC lock Unknown SChEdUle

initialization procedure. That procedure it

atoms and it will happen when the thread A for A and C
to the first stack trace from the comment A4

48

Final test

// Test in Concurrit DSL

TC = WAIT_FOR_THREAD (
ENTERS JS_NewContext) Igor Bukanov 2009-03-09 17:47:12 PDT Comment
TA = WAIT FOR DISTINCT THREAD (At least one problem that I can see from the code is that js
ENTERS JS DestroyContext) if (rt->state != JSRTS_UP && gckind != GC_LAST CONTEXT)
return;
TB = WAIT_FOR_DISTINCT THREAD (-\ oueside the oc 1ock. vov| Setyp
ENTERS JS DestroyContext) calls js_DestroyContext

First thread A removes its context from the runtime list. Th

RUN TA UNTIL READS &rt->state IN jS GC <& ———the last one so thread does not touch rt->state and eventual

latter skips the above c

RUN TB UNTIL COMPLETES < setore wnis monenc cre - FiXed, known schedule
e ——] runtime list, discovers for threads A and B

the-last-context-cleanup
RUN TA UNTIL WRITES &rt->gcThread IN js_GC€

At this stage the thread A gets the GC lock, setup itself as

runs the GC and releases the GC lock to proceed with the GC
LOOP UNTIL TA, TC COMPLETE { DOWN.

Now the thread C enters

BACKTRACK HERE WITH T IN [TA, TC] js_NewContext that the n
rt->state is DOWN, it re

initializati d
RUN T UNTIL READS OR WRITES MEMORY €—| wtoro sot it wint noomen TOFAa@ndC

} to the first stack trace Trom the comment 4.

Unknown schedule

49

Igor Bukanov

At least one problem that I can see from the code is that js_GC does the check:

2009-03-09 17:47:12 PDT

Comment 5 [reply] [-] [reply] [-]:

if (rt->state != JSRTS_UP && gckind != GC_LAST_CONTEXT)

return;

outside the GC lock. Now suppose there are 3 threads, A, B, C. Threads A and B

calls js_DestroyContext and thread C calls js_NewContext.

First thread A removes its context from the runtime list. That context is not
the last one so thread does not touch rt->state and eventually calls js_GC. The

latter skips the above check and tries to to take the GC lock.

Before this moment the thread B takes the lock, removes its context from the
runtime list, discovers that it is the last, sets rt->state to LANDING, runs

the-last-context-cleanup, runs the GC and then sets rt->state to DOWN.

At this stage the thread A gets the GC lock, setup itself as the thread that
runs the GC and releases the GC lock to proceed with the GC when rt->state is

DOWN.

Now the thread C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since
rt->state is DOWN, it releases the GC lock and starts the first context

initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread A runs the GC. This may lead precisely
to the first stack trace from the comment 4.

Final test

Software Under Test

_/__
-+

// Test in Concurrit DSL

TC = WAIT_FOR_THREAD (

ENTERS JS_NewContext)
TA = WAIT_FOR_DISTINCT_ THREAD (

ENTERS JS_ DestroyContext)
TB = WAIT_FOR_DISTINCT_ THREAD

ENTERS JS DestroyContext)
RUN TA UNTIL READS &rt->state IN js_GC
RUN TB UNTIL COMPLETES
RUN TA UNTIL WRITES &rt->gcThread IN js_GC
LOOP UNTIL TA, TC COMPLETE {
BACKTRACK HERE WITH T IN [TA, TC]

RUN T UNTIL READS OR WRITES MEMORY

Triggers assertion failure
in < 30 thread schedules

(Add to regression test suit)

50

Implementation/Evaluation

* Implementation: DSL embedded in C++
* Prototype: http://code.google.com/p/concurrit/

— Wrote concise tests for (real/manually-inserted) bugs in
well-known benchmarks

* Reproducing bugs
using < 20 lines of DSL code, after < 30 schedules
— Inspect: bbuf, bzip2, pbzip2, pfscan
— PARSEC: dedup, streamcluster
— RADBench: SpiderMonkey 1/2, Mozilla NSPR 1/2/3
* Ongoing: Apache httpd, Chromium, Memcached

— Can write various model checking algorithms (next slide),

I
\

Default search policies

EXPLORE_ALL SCHEDULES (THREADS) {
LOOP UNTIL ALL THREADS COMPLETE {
BACKTRACK HERE WITH T IN THREADS
RUN T UNTIL NEXT EVENT

EXPLORE_TWO CONTEXT BOUNDED SCHEDULES (THREADS) {
BACKTRACK HERE WITH T1 IN THREADS
BACKTRACK HERE LOOP NONDETERMINISTICALLY {
RUN Tl UNTIL NEXT EVENT

BACKTRACK HERE WITH T2 IN [THREADS EXCEPT T1]
BACKTRACK HERE LOOP NONDETERMINISTICALLY ({
RUN T2 UNTIL NEXT EVENT

’.q--EXPLORE_THREADS_UNTIL_COMPLETION(THREADS)
/ }

~ - => EXPLORE THREADS UNTIL_ COMPLETION(THREADS) ({
LOOP UNTIL ALL THREADS COMPLETE {
BACKTRACK HERE WITH T IN THREADS
RUN T UNTIL COMPLETION

52

Positioning Concurrit: Usage scenarios

Insert sleeps:
Explore one schedule

\

J

Concurrit

~

Control user-defined events
* Portable, testing library
 Manual instrumentation
* Generate exact/perfect

schedule
N W,

Control all operations

e Exhaustive testing tool

* Automated
instrumentation

* Generate all schedules

N

A

/

53

Unit-testing programs with Concurrit

Software Under Test (SUT) Test in Concurrit DSL
Instrumented to control Runs concurrently with SUT
Thread A
——————————L | e
N
Thread C Send event U ...

testfunc() {
JSContext *cx = JS_ NewContext (1 and bIOCk
if (cx) {
JS_BeginRequest(cx);
JS_DestroyContext(cx);

Unblock thread |

- }

}

54

Ongoing work: Integration testing
Controlling multi-process/distributed applications

Events

Concurrit monitor process

// Test in Concurrit DSL

Events

Events

Request process 1

Apache web server

Request process 2

// Threads sending
// requests to server

// Server threads
// handling requests

\

| |
i 1

// Threads sending
>// requests to server

55

Approaches to controlling thread schedules

Test run: A set of executions of the test driver.

)
Success: At least one execution in the run hits the bug.
Exhaust.
model
(- A / check
>
el /
H /
Q /
+ < | %
< ~ |
e Run 1000X S o I
() times S ~\ |
= (no control) Run 100X N . \}
8 times with N \
o) manual N \\
B control \4\
>
(sleeps) ~
2 >
x ~ Our target
qq: Explore
o) ~~a_ <1000
- P IR p N o execs.
8 =3~ ~>» | and robust
&
> \
=
Run once Ideal Test
% Rate of success (Robustness) 100

56

