CONCURRIT: A Domain Specific Language
for Reproducing Concurrency Bugs

Tayfun Elmas '

Jacob Burnim ¥

George Necula ~ Koushik Sen

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

{elmas, jburnim, necula, ksen}@cs.berkeley.edu

Abstract

We present CONCURRIT, a domain-specific language (DSL) for re-
producing concurrency bugs. Given some partial information about
the nature of a bug in an application, a programmer can write a
CONCURRIT script to formally and concisely specity a set of thread
schedules to explore in order to find a schedule exhibiting the bug.
Further, the programmer can specify how these thread schedules
should be searched to find a schedule that reproduces the bug. We
implemented CONCURRIT as an embedded DSL in C++, which
uses manual or automatic source instrumentation to partially con-
trol the scheduling of the software under test. Using CONCURRIT,
we were able to write concise tests to reproduce concurrency bugs
in a variety of benchmarks, including the Mozilla’s SpiderMon-
key JavaScript engine, Memcached, Apache’s HTTP server, and
MySQL.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging; F.3.1 [Logics and Meanings of Pro-
grams]: Specitying and Verifying and Reasoning about Programs

Keywords Concurrency Errors; Domain-Specific Languages;
Software Testing

1. Introduction

To diagnose and fix a software bug, a programmer often needs to
first reproduce the bug. That is, given some partial information
about the nature of the bug — e.g., from a bug report or from
directly observing erroneous program behavior — the program-
mer constructs a test scenario in which they execute some piece
of their software so that it reliably exhibits the bugs. Reproducing
such bugs can require controlling a number of sources of nondeter-
minism in a program’s execution, including program inputs, library
dependencies, and interactions with the underlying operating sys-
tem. This task is especially challenging for concurrent programs,
where a bug may occur only under very specific interleavings of a
program’s threads.

TThe author is currently affiliated with Google, Inc., and can be reached at
tayfunelmas@gmail.com.

¥The author is currently affiliated with Sift Science, Inc., and can be
reached at jburnim@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’'13, June 16-19, 2013, Seattle, WA, USA.

Copyright © 2013 ACM 978-1-4503-2014-6/13/06. .. $15.00

To reproduce concurrent bugs in practice, programmers often
do stress testing. In stress testing, a programmer imposes no con-
trol over the scheduling of threads. Rather, to increase the chance of
examining different and interesting schedules, the programmer cre-
ates a long-running test scenario with a large number of threads. In
addition, the programmer adds perturbations to the timings of the
threads by exploiting her (partial) knowledge about the bug. For
example, if the programmer has intuition about potentially prob-
lematic locations in the code, she inserts sleep statements at these
locations to perturb the thread schedule in a certain way. Such tests
can be long-running and the resulting buggy executions can be very
difficult to understand and debug due to the large number of threads
and complex test setups. Manually controlling the schedule, e.g.,
by inserting sleeps, can be ad hoc and unreliable and may require
nontrivial modifications in the program text.

In this paper, we propose CONCURRIT, a domain-specific lan-
guage (DSL) for reproducing concurrency bugs. When using CON-
CURRIT to reproduce a bug, as with the existing approaches de-
scribed above, a programmer begins with partial knowledge about
the bug, for example, a number of threads and some intuition about
how to schedule these threads to exhibit the bug. Then, the pro-
grammer also writes a fest script in the CONCURRIT language. This
CONCURRIT test script expresses the programmer’s knowledge
about the bug formally and concisely. In particular, the test script
describes a set of potentially-problematic thread schedules among
which the programmer intends to search for the target, buggy in-
terleaving. For this, the test script dictates partial constraints on the
thread schedule, for example, which threads are allowed to be in-
terleaved at which point of the execution, or at which code location
or under what conditions a context switch will happen. At runtime,
the script guides the interleaving of threads, within the constraints
given in the script, to generate these thread schedules.

CONCURRIT also gives the programmer the ability to imple-
ment various techniques to search for the target schedules. For ex-
ample, combined with automatic or manual instrumentation of the
program under test, the programmer can impose any level of con-
trol from none at all, as in random search, to full control of the
thread schedule, as in model checking (e.g., [19]). For this, the pro-
grammer uses DSL constructs to explicitly indicate nondeterminis-
tic choices in the interleaving (e.g., a set of threads one of which
will be scheduled next). At each execution of the test, these choices
are resolved in a controlled manner, in order to search for distinct
thread schedules with respect to these choices. While the choice
points for the schedule are explicitly indicated in the CONCURRIT
test, the underlying mechanics of the search are transparent to the
programmer. For example, the search can be implemented indepen-
dently from the test by employing one of a number of search strate-
gies we provide, such as depth- and breadth-first searches. This ap-
proach also enables rapid prototyping and evaluation of a custom
search strategy by writing and exploring a CONCURRIT test.

{elmas,jburnim,necula,ksen}@cs.berkeley.edu

CONCURRIT allows a programmer to simply specify and ex-
plore a set of thread schedules with various degrees of flexibility.
For example, the programmer may start with little intuition about a
bug and write a fully nondeterministic CONCURRIT test (i.e., any
thread may be scheduled any time), which results in a high num-
ber of thread schedules. As she gains more insight about the bug
based on the results of the CONCURRIT test, she can refine the test
to incorporate new insights, search fewer schedules, and reproduce
the target bug more quickly. For example, if the programmer thinks
that the bug resides in a small number of critical functions, she can
modify the test to express her interest in different interleavings of
threads only when the program is in one of these functions, leav-
ing a reasonable number of interleavings to explore. Furthermore,
one can write a fully deterministic test, which specifies an exact
schedule triggering the bug. A CONCURRIT test specifying one or
few schedules can be used to formally document the bug and for
regression testing after the bug is fixed.

Searching for thread schedules in our work carries similari-
ties to model checking techniques that enumerate thread sched-
ules, e.g., [6, 14, 19, 21]. However, our approach diverges from the
traditional model checking in two significant aspects. First, in the
CONCURRIT approach, the programmer can guide the exploration
of the schedules by imposing, within the test script, constraints on
individual schedules. This allows the programmer to restrict and
localize the search, and to focus on small number of interesting
program states and interleavings, and have the search terminate ear-
lier. Second, the traditional notion of model checking assumes that
(1) the thread schedule is a primary source of nondeterminism, and
(2) the entire thread schedule can be controlled. These assumptions
are fundamental for the soundness guarantees of such model check-
ing. Nevertheless, these assumptions only hold for relatively small
programs, not for large, complex software, such as web browsers
and servers. Controlling the entire schedule is challenging for large
programs, because precisely repeating an entire execution prefix
is very difficult due to sources of nondeterminism (e.g., timing of
computations and network events) other than the thread schedule.
Therefore, we accept that totally avoiding uncontrolled nondeter-
minism is not realistic in practice, and we develop our testing ap-
proach to embrace the possibility of uncontrollable nondetermin-
ism. A CONCURRIT test can describe the controlled nondetermin-
ism for part of the thread schedule and leave the rest of the schedule
unspecified. As a result, for example, a search for distinct thread
schedules with respect to the controlled nondeterministic choices
in the CONCURRIT test can be performed in the presence of par-
tially uncontrolled interleavings of threads. In fact, we do not have
to control the entire thread schedule, because concurrency bugs in
general can be triggered by controlling only a small (but critical)
part of the schedule. From this point of view, our approach inherits
the imperfect but lightweight and tolerant notion of control from
sleep-based approaches, and formal notion of search from model
checking.

Contributions and outline. In Section 2, we present a case study
showing how to use CONCURRIT to reproduce a real bug in
Mozilla’s SpiderMonkey JavaScript engine. We formally present
the CONCURRIT DSL, discuss how to write CONCURRIT search
strategies, and present several high-level CONCURRIT constructs
and patterns for writing effective and concise CONCURRIT test
scripts, in Sections 3, 4, and 5, respectively. In Section 6, we present
our implementation of CONCURRIT as an embedded DSL in C++.
Our framework supports the use of CONCURRIT for both unit test-
ing within a single process and system testing involving multi-
ple processes. In Section 7, we describe our experimental evalu-
ation of CONCURRIT, on a number of of multithreaded programs
from well-known Inspect [26], PARSEC [3], and RADBench [12]
benchmark suites. Our benchmarks include large software such as

the Mozilla’s SpiderMonkey JavaScript engine, Memcached, the
Apache HTTP server, and MySQL. We demonstrate the expres-
siveness and usefulness of CONCURRIT by writing tests to repro-
duce concurrency bugs in these benchmarks. Our implementation
is available at http://code.google.com/p/concurrit/.

2. Overview: Writing tests in CONCURRIT

We present a case study of using CONCURRIT from the perspective
of a programmer who wants to write a test to reproduce a con-
currency bug. We consider a real concurrency bug in the Mozilla
SpiderMonkey JavaScript Engine (version 1.8RCIl), a large
software system with 121K lines of code. (In Section 7 this bug
is named spidermonkey2.) The related bug report can be found at:
https://bugzilla.mozilla.org/show_bug.cgi?id=478336.
The bug manifests itself as an assertion violation and can be trig-
gered using the multithreaded program given in Figure 1 (supplied
with the bug report). We refer to this program as the software-
under-test (SUT).

The bug report shows a progressive understanding of the buggy
interleaving. The report starts from the stress testing of the code
in Figure 1 with 100 threads to reproduce the bug. Then, the
programmers collect information from the stack traces of buggy
executions to identify problematic code locations and schedules.
Finally, they figure out a scenario, given in Figure 2, describing of
a suspicious interleaving of three threads A, B, and C executing
testfunc in Figure 1.

Notice that, this scenario is still partial: It explains the key
scheduling decisions to bring the execution to a problematic pro-
gram state, say S, after which it will be highly likely that the bug
will manifest. But, the description leaves unspecified the rest of the
schedule, from S to the assertion violation. By writing a CONCUR-
RIT test, we can specify 1) the known scheduling decisions until S
and 2) a search for the missing part of the buggy schedule after S.

In this section, we demonstrate how to write tests in CONCUR-
RIT to incrementally capture the different stages of understanding
of the bug in the bug report. We will start with simple CONCURRIT
tests that assume little knowledge about the bug—i.e., having three
threads running the code in Figure 1, but not knowing how to inter-
leave them. To begin, we found it useful to first check whether the
bug is due to concurrency (Section 2.1), then continue with tests
with many possible thread schedules, but that do trigger the bug.
These tests will require searching among a large number of thread
schedules for a buggy one. We will subsequently incorporate more
and more intuition from the bug report to make our test more pre-
cise and efficient, by searching among fewer schedules. In this way:
(1) we show that a CONCURRIT script can formally and concisely
express the intuition of the programmer at various levels of detail,

static JSRuntime =rt;
static voidx testfunc(voidx ignored) {
JSContext xcx = JS_NewContext (rt, 0x1000);
if (cx) |
JS_BeginRequest (cx) ;
JS_DestroyContext (cx) ;
}
return NULL;
}
int main (void) {
rt = JS_NewRuntime (0x100000) ;
if (rt == NULL) return 1;
. // create threads to run testfunc (and join all)
return 0;

}

Figure 1. Test code manifesting a bug in SpiderMonkey (taken
from the related bug report).

http://code.google.com/p/concurrit/
https://bugzilla.mozilla.org/show_bug.cgi?id=478336

1 Now suppose there are 3 threads, A, B, C running test func.

> Threads A and B call js_DestroyContext and thread™C calls js_NewContext.

3 First thread”A removes its context from the runtime list. That context is not

4 the last one so thread does not touch rt—> state and eventually calls js_GC.
5 The latter skips the above check and tries to to take the GC lock.

6 Before this moment the thread™B takes the lock, removes its context from the
7 runtime list, discovers that it is the last, sets rt— state to LANDING, runs

s the-last-context-cleanup, runs the GC and then sets rt—> state to DOWN.

9 At this stage the thread"A gets the GC lock, setup itself as the thread that

Thread 1
(binds tB)

Thread 2
(binds tC)

Thread 3 CONCURRI

(binds tA)

(SearchSeqTest)

T Test Script

| | Send event ThreadStarts

Send event ThreadStarts,

— WaitForDistinctThreads
(3, ThreadStarts)

tA & Thread 3

tB < Thread 1

Send event ThreadStarts

0
11
12

runs the GC and releases the GC lock to proceed with the GC

when rt—> state is DOWN.

Now the thread™C enters the picture. It discovers under the GC lock in
js_NewContext that the newly allocated context is the first one. Since

rt—> state is DOWN, it releases the GC lock and starts the first context
initialization procedure. That procedure includes the allocation of the initial
atoms and it will happen when the thread”A runs the GC.

This may lead precisely to the first stack trace from the comment 4.

Figure 2. Bug scenario, taken from Comment #5 of the bug report,
describing an interleaving of threads for the program in Figure 1.

and (2) we highlight the common usage patterns of our DSL that
we follow in our experiments. (In Section 5.1 we revisit the general
form of these patterns.)

While we demonstrate only a few steps of refining CONCURRIT
tests, in reality, we do not always expect to have a quick transition
between tests, and there may be more steps before obtaining a
practical test. We expect the error information (such as stack traces)
from the failing executions in earlier steps will play the role of bug
reports to refine tests for the later steps. Although the earlier tests
find the bug, our goal is not only to trigger the bug, but to have
concise, informative, and targeted (towards the bug) tests.

2.1 First test: Run threads sequentially until completion

To begin, suppose that our intuition about our target interleaving
is limited: We know that three distinct threads, A, B, and C, are
sufficient to reproduce the bug, but we do not know how to sched-
ule these threads to trigger the error. Indeed, we do not even know
whether the bug is sequential or concurrent. Thus, before interleav-
ing the threads, we want to check if the bug is really related to con-
currency. For this, we want to run every thread sequentially, i.e.,
without being interleaved with another thread until its completion.
Our first CONCURRIT test is as follows:

I

SearchSeqTest :

1 Tid tA,tB,tC = WaitForDistinctThreads(3, ThreadStarts);
2 while(!HasEnded(tA) | !HasEnded(tB) || !HasEnded(tC)) {

3 Tidt = ChooseThread(tA,tB, tC);

4 RunThreadUntil(t, ThreadEnds);

5}

L

A CONCURRIT test is run concurrently with the SUT (in Fig-
ure 1) and controls the scheduling of the threads in the SUT. Test
SearchSeqTest demonstrates two kinds of control CONCURRIT
can impose on the schedule: (1) It describes how the threads A,
B, and C in each execution should be scheduled; in our case, each
thread runs sequentially (without interleaving with another thread)
until completion. (2) It describes a set of schedules satisfying the
constraint in (1) and differ in the scheduling order of threads. In or-
der to realize this control, the SUT is instrumented to interact with
the CONCURRIT script. The CONCURRIT script hides the mecha-
nism for this interaction from the programmer and allows her to
specify the thread schedule without thinking about the low-level
details of how the SUT is controlled.

The diagram in Figure 3 illustrates the interaction between
three threads in the SUT and the test SearchSeqTest. Func-
tion WaitForDistinctThreads at Line 1 waits for three distinct

tC < Thread 2

1
D ChooseThread returns tC

---;m

Unblock thread

RunThreadUntil

Send event ThreadEnds (tC, ThreadEnds)

1
D ChooseThread returns tB

e ety I |

Unblock thread

RunThreadUntil
(tB, ThreadEnds)

Send event ThreadEnds

1
D ChooseThread returns tA

| _ Unblock thread n

RunThreadUntil

Send event ThreadEnds (tA, ThreadEnds)

Figure 3. Interaction between the SUT threads and test script.

threads in the SUT to run and reach a point satisfying its second
argument (ThreadStarts), then binds variables tA, tB, and tC to
the identifiers of those threads. The predicate ThreadStart indi-
cates that this binding occurs when the threads start executing. On
binding, each thread is blocked until re-enabled by the test.

At lines 2-5, the test controls the execution of threads tA, tB,
and tC in a loop, which iterates until all the threads terminate (line
2). At each iteration, ChooseThread nondeterministically chooses
one of the variables tA, tB, and tC (line 3) and assigns it to variable
t. Then, RunThreadUntil enables the chosen thread referred to by
t to execute (line 4). The second argument of RunThreadUntil
indicates until when the thread will be allowed to execute. The
predicate ThreadEnds indicates that thread t should keep running
until it terminates. While t is executing, the other two threads
remain blocked. In addition, since the test binds only three threads,
all other threads in the SUT remain blocked until the loop ends,
after which the control on the SUT imposed by the test is removed.

Controlled nondeterminism. The command ChooseThread
specifies a nondeterministic choice of given arguments. This non-
determinism is controlled by our test and resolved to implement a
search for thread schedules. For example, one can implement ran-
dom testing by using a random number generator to choose the
thread.

In our work, we provide a search strategy that restarts the
SUT multiple times and explores a distinct combination of these
choices until all distinct combinations are enumerated. This pro-
vides the mechanism to search for all possible thread schedules
specified by the CONCURRIT test. During this search, for ex-
ample, if ChooseThread chooses an already-terminated thread,
RunThreadUntil timeouts and restarts the SUT to explore a differ-
ent schedule. While the choice points for the schedule are indicated
explicitly using ChooseThread, the underlying search strategy is
transparent to the programmer. Thus, as explained in Section 4, one
can customize the search independently of the test, for example to
follow a depth-first or breath-first order.

When guided by the test SearchSeqTest, our search generates
6 thread schedules in which threads tA, tB, tC are run in different

orders (but sequentially). However, these schedules do not trigger
the assertion violation. This confirms our intuition that the bug is
due to concurrency. Thus, we need to allow threads to interleave
with each other to trigger the bug.

2.2 Second test: Interleave threads at finest granularity

In our second test we want to interleave the threads. But, suppose
we still do not have any knowledge about what interleavings will
trigger the bug. Our next step is to allow threads to interleave
arbitrarily, and search for the buggy interleaving among these fine-
grained interleavings. We can slightly change SearchSeqTest to
permit such interleaving of threads tA, tB, and tC as follows:

I
SearchAllTest :
Tid tA, tB, tC = WaitForDistinctThreads(3, ThreadStarts);
while(!HasEnded(tA) || !HasEnded(tB) | !HasEnded(tC)) {
Tid t = ChooseThread(tA, tB, tC);
RunThreadUntil(t, ReadsMenm | WritesMenm || CallsFunc| ThreadEnds);

}

~OUE W N

We modify line 4 to replace the predicate ThreadEnds
with ReadsMem || WritesMem | CallsFunc| ThreadEnds. The
new predicate indicates that thread t (chosen at line 3) should run
until it attempts to access the memory (read from or write to an
address), calls a function, or terminates. When thread t attempts to
perform one of these operations, the command RunThreadUntil
ends and leaves thread t blocked before that operation. When
RunThreadUntil is called again with t bound to the same thread,
it first unblocks the thread to let it complete the operation, and then
runs the thread until next operation satisfying the predicate.

As it allows threads to interleave at fine granularity, our second
test SearchAllTest can generate the buggy thread schedule vio-
lating the assertion. However, the buggy schedule is generated after
exploring millions of schedules of the test. This means, whenever
we want to reproduce the bug using this test, we have to wait for
days to see the assertion violation. Although the test allows us to
examine all schedules, there are a huge number of them. Moreover,
the bug is triggered by a small number of tricky interleavings; thus,
most of the schedules do not create the buggy situation. Thus, it will
not be practical to use SearchAl1Test for the purpose of repro-
ducing the bug. (It is for this reason that traditional model checking
is often impractical to use for large software.)

2.3 Third test: Localize search to suspicious states

The real power of CONCURRIT can be seen when we need to re-
strict the search space of interleavings. Note that, SearchAl1Test
runs the search for the entire lifetime of the threads. After ex-
amining the executions with assertion violations generated by
SearchAllTest, we next localize the search for interleavings to
a shorter period of the execution in order to enumerate fewer inter-
leavings and to more quickly reach the intended state at which the
assertion is violated. We refine our test as follows:

I 1
SearchInBuggyTest :

RunThreadsUntil(tA, tB, EntersFunc(JS_DestroyContext));
RunThreadUntil(tA, InFunc(js-GC) && ReadsMem(&rt—> state));
RunThreadUntil(tB, ThreadEnds); / thread B does not involve after this point
RunThreadUntil(tA, InFunc(js_GC) && WritesMem(&rt—> gcThread));
while(InFunc(tA, JS_DestroyContext) | InFunc(tC, JS_NewContext)) {
Tid t = ChooseThread(tA, tC);
RunThreadUntil(t, ReadsMenm | WritesMenm || CallsFunc| ThreadEnds);

}

~—O 00 3O Ui W -

Tid tA, tB, tC = WaitForDistinctThreads(3, EntersFunc(JS_NewContext));

We first notice that the problematic portion of the interleaving is
after threads A and B call JS_DestroyContext and thread C calls
JS_NewContext. Thus, we want to only examine interleavings

starting not from the beginning of the execution, but after the
threads enter these functions. We incorporate this new insight to
our CONCURRIT test as follows. First, we replace the condition
ThreadStart at line 1 with EntersFunc(JS_NewContext). The
new version of WaitForDistinctThreads waits until the threads
all start executing JS_NewContext—and then get blocked. Then,
the command RunThreadsUntil at line 2 runs threads tA and
tB (permitting them to interleave) until both threads start running
JS_DestroyContext, at which point they are blocked.

Furthermore, at lines 3-5 we explicitly schedule the threads to
lead the execution towards a problematic state (discussed below).
The search for distinct interleavings starts after this point and is
performed at lines 6-9. The body of the loop to interleave threads
differs from that of SearchA11Test in two ways. First, as thread B
terminates (at line 4) before the search starts, we remove references
to tB from the loop. Second, the loop condition indicates that we
are only interested in distinct interleavings of threads while running
JS_ NewContext and JS DestroyContext.

Compared to SearchAllTest, our test SearchInBuggyTest
is more effective in reproducing the bug: it generates the buggy
interleaving after exploring less than 10 schedules of the test.

Capturing the programmer’s knowledge in the bug report. Test
SearchInBuggyTest indeed concisely and formally expresses the
interleaving scenario in Figure 2. Our test also includes a search
for the final portion of the interleaving to address the (missing)
rest of the scenario. While the test scenario in Figure 2 explains
our intuition about why the assertion is violated, the test formally
documents and implements this intuition to reproduce the bug.

In detail, we realize that the assertion is violated because in
a buggy execution there exists a problematic state S at which
thread A starts a garbage collection routine js_GC to deallo-
cate some shared data structures of the JavaScript engine, and
thread C starts initializing these data structures. The scenario de-
scribes an interleaving to lead the execution towards state S and the
commands between lines 1-5 of SearchInBuggyTest guides the
threads to follow this interleaving. During this interleaving thread B
terminates (at line 4), and the rest of the execution after S involves
only threads A and C executing functions JS_DestroyContext
and JS_NewContext, respectively. Interleaving of A and C after
S results in a data race between A and C on a shared data structure,
leading to an assertion violation about the data structure. Note that,
our knowledge about the buggy interleaving is still partial, because
we do not know how A and C should interleave after S to trigger the
assertion violation. Thus, at lines 6-9, we search for interleavings
A and C during this final part of the execution.

Uncontrolled nondeterminism. In addition to the controlled non-
determinism in command ChooseThread, SearchInBuggyTest
also allows uncontrolled nondeterminism. Except when specifically
blocked and sequentialized by the CONCURRIT script, the threads
in the SUT are allowed to run in parallel following a nondetermin-
istic schedule. For example, at Lines 1 and 2, the threads run in par-
allel until they start executing functions from JS_NewContext and
JS_DestroyContext. The test does not control the nondetermin-
ism in the thread schedule until they start executing these functions.
Thus, a search guided by SearchInBuggyTest may generate an-
other execution in which the threads follow a different interleaving
before they enter these functions; such interleavings are not distin-
guished from each other. Moreover, after Line 1, any threads other
than tA, tB, and tC run in parallel without any interruption by the
CONCURRIT test. By embracing uncontrolled nondeterminism in
this way, a CONCURRIT test can tolerate changes in the execu-
tion context across different executions of the SUT and can still
explore different schedules. In addition, our tests highlight that the
CONCURRIT script can express a very complicated schedule in a

compact form, as it specifies only the key scheduling decisions and
choices. Therefore, a programmer can conveniently use CONCUR-
RIT to test her partial knowledge about the thread schedules without
needing to specify uninteresting and irrelevant parts of the sched-
ule.

2.4 Final test: Generate exact buggy interleaving

In SearchInBuggyTest we have localized the search (lines 6-
9) for the latter, short part of the schedule. As a result, each
interleaving explored by the loop in SearchInBuggyTest con-
tains few context switches of threads tA and tC. Moreover,
since we have also increased the likelihood of hitting the bug in
SearchInBuggyTest, we will have many buggy interleavings to
compare and find the common scheduling decisions in the latter
part of the schedule. Thus, it becomes manageable to analyze the
latter part of the interleavings and extract a test without search that
will trigger the bug at every execution.

To develop the final, exact schedule, we select buggy executions
with the least number of context switches and (manually) alternated
two refinement steps: Strengthen: Using the execution trace, trans-
late an exact, buggy schedule to a CONCURRIT test, i.e., express a
sequence of operations by the same threads to a RunThreadUntil
command. Weaken: Try to remove some RunThreadUntil com-
mands and check if the bug is still triggered. After several refine-
ment steps, we figure out an exact interleaving after the problem-
atic state S to reach the assertion violation, and replace the loop in
SearchInBuggyTest with a sequence of RunUntilThread com-
mands to guide the execution of the SUT along the buggy interleav-
ing. Our final test ExactScheduleTest is as follows:

I 1
ExactScheduleTest :

RunThreadsUntil(tA, tB, EntersFunc(JS_DestroyContext));
RunThreadUntil(tA, InFunc(js-GC) && ReadsMem(&rt—> state));
RunThreadUntil(tB, ThreadEnds);

RunThreadUntil(tA, InFunc(js-GC) && WritesMem(&rt—> gcNumber));
RunThreadUntil(tC, EntersFunc(js_AddRoot));

RunThreadUntil(tA, ReturnsFunc(js_GC)); // violates assertion!

1O UL WN

Tid tA, tB, tC = WaitForDistinctThreads(3, EntersFunc(JS_NewContext));

Our final test concisely describes few key scheduling decisions
causing the bug and leaves other parts of the thread schedule un-
specified. The control imposed by the CONCURRIT script is enough
to guide the SUT to the assertion violation at every execution. Thus,
we can use this test to file a bug report and to check if any fix for
the bug prevents the problem; after the fix, we can add the test to
our regression suite.

In summary, we demonstrated an iterative process for one to
refine a CONCURRIT test by incorporating new insights about the
target schedules. At each step, we fixed a longer, former portion of
the target interleaving and localized the search for unknown portion
of the interleaving around a smaller region of the interleaving
space. Finally, we were able to simplify our test to describe an
exact, buggy schedule in a concise and formal form.

3. DSL for controlling thread schedules

In this section, we provide a low-level, imperative language to
describe and control intended thread schedules of the SUT.

3.1 Software-under-test (SUT)

We do not assume any specific syntax and semantics for the
Software-under-Test (SUT)—we leave abstract (1) the structure of
SUT-states and (2) transitions between such states. Let SUT'State
refer to the set of all SUT-states, S range over SUTState, and
So € SUTState be the unique initial state of SUT.

We assume that each SUT-state consists of a set of threads, each
of which is referred to via a unique thread identifier. Let 7"id be the

set of all thread identifiers and t range over 7'd. In case the SUT
consists of multiple processes, the set 7"id contains all the threads
contained in these processes.

To present the operation of a CONCURRIT test, we assume a
standard interleaving semantics for the execution of threads in the
SUT: At any time only one thread is allowed to execute, modifying
its own local variables, and possibly, some global variables. We also
abstract away the memory model issues by assuming a sequentially

consistent memory model. We use the notation .S 48" to indicate
that a thread ¢ € T'id in the SUT can execute from state S and leads
to SUT-state S’.

In addition, the SUT code is instrumented, so that when a thread
t visits an instrumentation point, it generates an event carrying
information about the operation to be performed next by ¢ and
blocks. (See Section 6 for details of this instrumentation). For this,
we extend the notation for SUT-transitions as follows. We write
SLS’/e to indicate that thread ¢ also generates an event e as a
result of the state transition.

Event. We represent each event as a record from fields to values
describing an operation performed by a thread, such as accessing
a memory location, entering or exiting a function, and terminating.
Let Fvent be the set of events, and e range over Event.

Given an event e, we write e. f to refer to field f of the event.
Each event contains at least two fields, kind and tid, to indicate
the type of the operation for which the event is generated and the
generating thread’s identifier, respectively. Other fields are used to
store more information about the operation, for example, addr field
for the memory address read or written, func field for the function
being called, and pc field for the related source location.

CONCURRIT scripts use a special form of boolean expression,
called event predicates, to represent sets of events. Let EPred
contain all event predicates and p range over EPred. Following is
the list of event predicates we commonly use in our tests:

WritesMem =)e. e.kind == MemWrite

WritesMem(a) = Me.ekind==MemWrite && e.addr==a
EntersFunc(f) = \e. e.kind == FuncEnter && e.func ==f
CallsFunc = Je. e.kind == FuncCall

ThreadEnds =)e. e.kind == ThreadEnd

AtControl(x) = Me.e.kind==Control && e.pc ==x

Predicate AtControl is used to refer to events generated at
particular source locations (control point) in the SUT code.

The events generated by SUT threads are communicated to the
CONCURRIT script, and they provide the mechanism to interact
with and control the execution of the SUT. In particular, generating
an event causes the originating thread to block until the CONCUR-
RIT script observes the event and explicitly enables the generating
thread to continue.

3.2 CONCURRIT: Syntax

Figure 4 shows the core syntax of CONCURRIT. We will extend this
syntax in Section 4 to support exploring multiple test executions.

A statement in our DSL is denoted by C. Our DSL extends
an imperative language with two special commands: select and
release. (Command endrun represents an instruction that marks
the end of the execution.) These special commands can be imple-
mented as a library of procedures on top of an imperative language,
in our case, C/C++. Thus, we follow the C language syntax for stan-
dard imperative constructs and expressions in CONCURRIT.

Symbols b, t, and e refer to CONCURRIT variable names stor-
ing Boolean values, thread identifiers, and events, respectively. The
variables have types bool, Tid, and Event, respectively. We also
use x to refer to a variable of an arbitrary type.

SUT-STEP-WITHOUT-EVENT

teTid Et)=1 SbLS t e Tid

SUT-STEP-WITH-EVENT

E®)=1 SLH5%

SELECT
teD|T E({)=e D' =Dle—ce]

(Sz D’ E: C) - (S/zD» E7 C)

SELECT-TIMEOUT
Vte D | T.E(t) = L
(Time limit for select expires)

(S,D,E,e = select(T);C) --» (S, D, E, endrun)

IF
¢’ = (D(b) = true) ? (C1;C) : (C2;C)
(S, D, E,if(b) {C1} else {C2};C) --» (S, D, E,C’)

(SvD:E’C) 2 (S/aD7E[t — 6],0)

(S, D, E,e = select(T);C) --» (S, D, E,C)
RELEASE
Vte D | T.(E(t) # L A E'(t) = 1)
Vt¢ D | T. E'(t) = E(t)
(S, D, E,release(T);C) --» (S, D, E’, C)

WHILE
¢’ = (D(b) = true) ? (C1;while(b) {C1};C) : C

(S, D, E,while(b) {C1};C) --+ (S', D, E,C’)

Figure 5. The operational semantics of CONCURRIT.

b,t,e,x € Var

T == AnyThread |t |T+t |T—t Thread expressions
C == e = select(T) Wait for event from thread(s)
| release(T) Unblock thread(s)
| endrun End of execution
| if(b)CelseC Conditional
| while(b) C |break Loop
|

C;C Sequential composition
e Other imperative constructs

Figure 4. Syntax of CONCURRIT.

3.3 CONCURRIT: Semantics

We next give an operational semantics to CONCURRIT. For this,
we think of the software-under-test (SUT) and the test written in
CONCURRIT running together as a single system, in which the SUT
and the DSL script run concurrently and in interaction with each
other (events provide the mechanism for their interaction). Thus,
we define a test state as the composed state of the SUT and the
DSL script in CONCURRIT.

3.3.1 Test state
A test state is described by a tuple (S, D, F, C):

e S € SUTState is a state of SUT as described in Section 3.1.
Note that we abstract out the details of SUT states.

e D e DSLState is the state of the DSL script written in
CONCURRIT. Let Var be a set of variable names. State D
is a map from Var to Value. Let dom(D) denote the set of
variables defined at state D. We write D(x) to denote the value
of a variable x € dom(D) in state D. We write D[x — v] to
denote the DSL state that agrees with D for all variables except
that x is mapped to value v.

E is a map from T"id to Fvent. For athread ¢ € Tid, E(t) = L
indicates that ¢ has no event associated with it, and E(t) €
FEvent indicates that ¢ is blocked at an event and waiting for the
CONCURRIT script to unblock it. We write £ = [At € T'id. L]
to indicate that no thread in £ is mapped to an event. We use
similar notation to D to update the map F (e.g., E[t — €]).

e C is the rest of the DSL program (a statement from Figure 4) to
evaluate next.

3.3.2 Test executions

Figure 5 gives an operational semantics for an execution of the
SUT composed by the test in CONCURRIT. Such an execution is
expressed as a sequence of test-state transitions governed by the
rules in Figure 5:

(So, Do, [At € T'id. 1],Co; endrun) --+* (S, D,,, E,,, endrun)

In the initial test-state, Sp and Dy denote the unique initial states
of the SUT and the DSL, and Co denotes the CONCURRIT script
written by the programmer. Notice that, we sequentially compose
the DSL statement Cy with special command endrun. During the
execution, the statement Cp; endrun is modified by the operational
semantics rules to indicate the next DSL statement to be evaluated,
and the execution terminates when the DSL statement is fully
evaluated to endrun.

Without loss of generality, we use an interleaved semantics for
the execution, where at any time either an SUT thread or the DSL
script may take a transition.

SUT-transitions. As stated by rules SUT-STEP-WITHOUT-
EVENT and SUT-STEP-WITH-EVENT, a thread ¢ in the SUT may
execute and lead the SUT from state S to a new state S’ (expressed

by S +,8"). The transitions by an SUT thread ¢ is enabled only
when E(t) = L holds, i.e., there is no event associated with ¢
in the current test state. If thread ¢ generates an event e as a result
of this transition, it is associated with that event using the map £
(see SUT-STEP-WITH-EVENT). This causes thread ¢ to be blocked
until the DSL script executes a release command on thread ¢ to
remove this mapping (see rule RELEASE).

DSL-transitions. Each DSL transition evaluates the current script
C to result in a new script C’, and possibly modifies the internal
DSL state D and the mapping E. These transitions are governed by
the semantics rules other than SUT-STEP-WITHOUT-EVENT and
SUT-STEP-WITH-EVENT. Transitions by the DSL do not affect
the SUT-state S. The DSL script can only control the execution
of the SUT by modifying the map E, which affects the further
transitions of the SUT by, for example, unblocking a thread waiting
on an event.

3.3.3 Controlling thread schedule with select and release

Thread expressions. The DSL commands select and release
operate on a set of thread identifiers. We use thread expressions
(T of type TExpr) to identify a set of thread identifiers. Syntax
for thread expressions is given in Figure 4. First, the special DSL
constant AnyThread represents the set of all thread identifiers,
i.e., Tid. Second, each thread variable t (storing the identifier of
a thread) is also treated a thread expression representing the set
{D(t)}. Finally, we overload the + and — operators to include or
exclude a thread identifier to/from the set.

We write D |} T to refer to the set of thread identifiers (subset
of T'id) represented by the expression T in D. This set is defined
recursively as follows:

D || AnyThread = T'id D|(T+t)=D | Tu{D(t)}
D+ ={D(t)} DU (T—t)=DUT\{D(t)}

We say that a thread with identifier ¢ satisfies T (or T is satisfied
by thread ¢) at a state D ift € D || T.

Waiting for an event. The command e = select(T) takes a
thread expression and waits for a thread whose identifier is in the
set D |} T to generate an event. The command then binds variable
e to the generated event. For example, e = select(AnyThread)
waits for any thread, e = select(t) waits for thread t, and
e = select(AnyThread — t) waits for any thread except t to
generate an event.

Semantics rule SELECT governs this operation of select. Note
that an event generated by a thread ¢ is recorded at E.%, so the rule
simply queries E to retrieve this event.

Timeout. Due to an incorrect test script or uncontrolled nondeter-
minism in the SUT (as explained in Section 2), no thread in D || T
may generate an event from the current test state. In order to detect
such situations, we allow the implementation of a timeout mecha-
nisms. For this, we include the rule SELECT-TIMEOUT, which al-
lows select to end the execution by evaluating the current DSL
statement to endrun, when no thread in D | T is associated with
an event.

Nondeterminism in select. Notice that rules SELECT and
SELECT-TIMEOUT bring some nondeterminism to the semantics.
For example, consider a command e = select(T). First, the com-
mand can choose an arbitrary thread from the set D | T, or, before
taking effect it can even wait for a state in which more threads gen-
erate events and satisfy T. Second, if no thread in D || T has gener-
ated an event, the command may evaluate to endrun before waiting
a thread to generate an event. For the former case, our high-level
constructs in Section 5 give examples to controlling this nondeter-
minism. For the latter case, the programmer can set, in the CON-
CURRIT test, a time limit for each invocation of a select com-
mand.

Unblocking threads. The command release(T) takes a thread
expression and unblocks all threads whose identifiers are in the set
D || T. This is governed by the rule RELEASE. The rule requires
that all threads that are specified by T are associated with an event.
Thus, release should be called for threads that have already
generated and associated with an event at the current test state.
A common way to ensure this condition, which we consistently
followed in our case studies, is to match each release on a thread
t to a previous select on the same thread ¢.

4. Searching for thread schedules

Having introduced the CONCURRIT constructs to control the
scheduling of threads, we next extend our DSL to express a set
of schedules and present mechanisms to search for these schedules
in the presence of uncontrolled nondeterminism.

To accommodate the notion of search in CONCURRIT, we first
add to the syntax of CONCURRIT a new command: (Let k refer to
a constant value.)

C = --- Constructs from Figure 4
| x = choose(ki,...,kn) Askoracle to choose a value

The new construct choose is used to guide the execution (in ad-
dition to select and release) to support the search for schedules.
To explain the semantics of choose, we include in our formalism
an oracle denoted, O, which resolves controlled nondeterminism
in the test. We extend the test state (defined in Section 3.3.1) to in-
clude an oracle, and add to the operational semantics two new rules
shown in Figure 6. The original rules in Figure 4 remain the same,
except that they preserve O as is during the transition. The oracle
O may change only by the new rules in Figure 6.

CHOOSE
O.choose(ky, ...,
ke {kl, ceny kn}

(S, D, E,x = choose(ki, ...,

k) = (k,O")
D' = D[x — k]

kﬂ)7 C, O) - (Sv Dl7 E7 C, Ol)

RESTART
O.restart() = Some(O’)

(S, D, E, endrun, O) --» (Sp, Do, [\ € Tid. 1], Cp; endrun, O")

Figure 6. The extended operational semantics of CONCURRIT for
search. We keep the original rules in Figure 5 except that we include
an oracle O to the test state and preserve O during the transition.

Choose. Rule CHOOSE governs the operation of the command
x = choose(ky, ..., kn). The command is used to request an input
from the oracle O to be used to guide the current execution. Op-
eration O.choose(ki, ..., ky) returns a pair (k, O), where k is the
value chosen by the oracle from k1, ..., ky, and O’ is the new state
of the oracle. The oracle can choose nondeterministically or it can
track choices across multiple executions to implement a search.

Restart. Rule RESTART allows the oracle O to start a new ex-
ecution of the SUT when the current one terminates (when the
CONCURRIT script evaluates to endrun). For this, we define the
O.restart() operation to return either Some(QO’) or None. If the
oracle decides to start a new execution, it returns Some(Q"), where
O’ is the oracle to guide the SUT during the new execution. In this
case, the SUT and the CONCURRIT script are restarted from their
initial states. Recall that, in the initial test-state, the CONCURRIT
script Co is sequentially composed with endrun. If the oracle de-
cides that there are no more executions to explore, it terminates the
overall test by returning None.

Modularity of Test Scripts and Oracles. The interface of the ora-
cle cleanly separates (1) the description of a set of thread schedules
in CONCURRIT and (2) the exploration of these schedules. The or-
acle guides the exploration in (2) by defining a search strategy and
related heuristics transparently to the CONCURRIT script. To ex-
plain this separation, consider the following test:

I 1
InterleaveTwoThreads :

1 Event el = select(AnyThread); Tid t1 = el.tid;
2 Event e2 = select(AnyThread — t1).tid; Tid t2 = e2.tid;
3 while(!HasEnded(t1) || !HasEnded(t2)) {

4 Tidt = choose(t1,t2); // Oracle chooses one of the threads.

5 do { // Loop until thread t accesses the memory.
6 release(t); // Enable thread t to execute.

7 Event e = select(t); / Wair until thread t blocks at another event.
8 } while(!ReadsMem(e) && !WritesMem(e));

9}

|

The test binds variables t1 and t2 to two distinct threads at
Line 1 and 2, respectively. At each outer loop iteration, one of the
threads t1 or t2 is chosen by the choose(t1, t2) construct at Line
4. Then, the chosen thread t is enabled to execute using release
at Line 6, until the thread is blocked at another event. When the
chosen thread is blocked at an event before an access (read or write)
to the memory, the test repeats the outer loop and choses a new
thread. Irrespective of the choice made by the oracle O at Line 4,
the test describes a set of interleavings, say I, of two distinct threads
where a new scheduling decision is made (at Line 4) after every
memory access event. The described interleaving ends when both
threads terminate (HasEnded(t) at Line 3 returns true iff thread t
has terminated). Different oracles, however, will differ in the order
in which the interleavings are explored.

Implementing oracles. With our oracle interface—choose and
restart—itis straightforward to implement various search strate-

O.choose(ki, ..., kn):
if O.index > |O.7| then
// EXTEND PREFIX: Record chosen value in the prefix
let K = {k1,....,kn}
k = nondeterministically choose from set K
O.1.append((k, K \ {k}))
else
// REPLAY PREFIX: Use previously chosen value in the prefix
let (k, K) = O.prefiz[O.index]
10 endif
11 O.index = O.index + 1
12 return (k, O)

© 0O~ U kR WN -

130.restart():

14 R={i|1<i<|0.7|r0O7[i] =(k K)rK# &}
15 if R # (& then

16 m = maz(R)

17 let (k, K) = O.7[m]and k¥’ € K

18 O.1.pruneAfter(m — 1)

19 O.1.append((k', K\{k'}))

20 O.indexr =1

21 return Some(O)

22 else
23 return None
24 endif

Figure 7. Oracle implementing depth-first search.

gies, such as breadth-first and depth-first search. In the following,
we give an abstract, declarative description of an oracle implement-
ing search. To make our point concrete, we explain how to instan-
tiate this oracle for depth-first search; other search techniques and
heuristics (e.g., [17]) can be integrated to our framework following
a similar methodology.

4.1 Implementing oracles for search

Our oracle O tracks a trace of each execution, denoted 7. The trace
consists of the inputs and outputs interchanged between the oracle
and the CONCURRIT test—in particular the sequence of choices
taken by the oracle in response to choose commands. The oracle
also keeps a set T of traces for the complete executions it observes.

Initially, set 7 is empty, and the oracle starts with an empty
trace 7. During the execution, calls to operation O.choose() extend
trace 7. Note that, when the execution terminates, the semantic rule
RESTART invokes O.restart() to decide whether to start a new
execution or to terminate the search. Operation O.restart() first
adds 7 to set T, and then computes from 7 a new trace 7’ satisfying

the following: (i) Trace 7' is non-empty, (ii) it is not a prefix of

another trace in T, and (iii) the longest prefix ™" of 7' such that
7" # 7' is a prefix of some trace in T. Thus, trace 7’ may be used to
generate an execution (particularly, a thread schedule) distinct from
the previously explored ones. If no such 7’ exists, O.restart()
returns N one, which terminates the exploration. Otherwise, during
the next execution, the oracle first replays 7'—i.e., it uses the
records in 7’ to respond to calls to O.choose(). When all records
in 7’ are used, the oracle extends 7’ to a complete trace in the rest
of the execution.

4.1.1 Oracle for depth-first search

In our framework, we implement search by following a depth-first
search (DFS) strategy. Figure 7 gives an implementation of the
oracle O following a depth-first search strategy. We implement the
trace T as a sequence of pairs (k, K). Each pair records in the first
element k a choice taken by the oracle in response to a choose
command. The second element K is the set of values that has not
been chosen yet. The oracle also keeps an index index, which
points to an element of 7 to be considered next while replaying
the trace.

18void RunThreadsUntil
(Tid t1,...,tn,EPred p) {

1 Tid WaitForThread
(TExpr T, EPred p) {

2 while(true) { 19 TExprT =tl+ - -+ tn;

3 Event e = select(T); 20 release(T);

4 if(p(e)) returne.tid; 21 intc =m;

5 release(e.tid); 22 while(0 < c—-) {

6 } 23 Tid t = WaitForThread(T,p);
7} 24 T—T-—t;

s 25

TidList WaitForDistinctThreads
: 26}
(int n, EPred p) {
9 TExpr T = AnyThread;
10 TidList ts;

27Tid ChooseThread
(Tid t1,...,tn) {

11 while(0 <n—-){ 28 intk = choose(1,...,n);
12 Tid t = WaitForThread(T,p); 29 switch(k) {

13 ts.add(t); 30 case 1 : returntil;
14 T=T- ¢ 31

15 } 32 casen : return tn;

16 returnts; 33

17} 34}

Figure 8. Our test library with high-level functions

For the entire search, the oracle modifies the trace 7 as a DFS
stack, which eliminates the need for additional traces. Thus, during
the O.restart() operation, the set 7 only contains the last explored
trace 7. The oracle computes the new trace 7’ (to replay in the next
execution) from 7 by backtracking to the last record (k, K) of a
choose command in the trace such that K contains at least one
unchosen element, say k', and updating that record to (k', K\{k'}).
This ensures that during the replay of 7’ the oracle responds to the
corresponding invocation of choose by returning &’

5. A high-level library for writing concise tests

While the core CONCURRIT DSL introduced in Sections 3 and 4 is
useful to formally explain the control obtained by a CONCURRIT
test, the low-level primitives in the DSL may not be appropriate for
programmers to write concise tests. In this section, we show how
these low-level primitives can be combined to implement higher-
level constructs, as a library of functions. Our library is shown in
Figure 8. We found this library sufficient and convenient to write
tests for our benchmarks (Section 7). In fact, we conclude this
section by describing common usage patterns of the library that
we have learned from our experiments.

Waiting for a thread. 'We define two functions to wait for threads.
Function WaitForThread takes a thread expression T and an event
predicate p, and repeatedly runs the threads satisfying T until one
thread in T generates an event satisfying p. A common use of
WaitForThread is with T = AnyThread, to enable all threads
in the SUT until the expected event is generated.

Function WaitForDistinctThreads waits for a fixed number
of threads each to generate an event satisfying p. Once a thread
generates such an event, we ensure at Line 14 that the thread is no
longer run by removing its identifier from the thread expression T.

Running threads. The library functions WaitForThread and
WaitForDistinctThreads return one or a set of blocked thread
identifiers, respectively. Function RunThreadsUntil takes a list
of already-blocked threads and reenables them (via release).
Then, the function runs each reenabled thread until the thread
generates an event satisfying predicate p. For readability, when
using only a single thread identifier t, we call the function
RunThreadUntil(t, epred).

Selecting a thread variable. We define function ChooseThread
for selecting from a given set of thread variables, using the prim-
itive choose explained in Section 4. Thus, we use this function
when we want to introduce a scheduling point for which all possi-
ble choices must be explored.

5.1 Test patterns using high-level constructs

In this section, we present common test patterns. Most of our
patterns are based on the following generic pattern:

I

GenericPattern(int n, EPred p_start, p-schedule, BExpr loop-cond) :
1 Tidt1,...,tn = WaitForDistinctThreads(n, p_start);

2 ... // Run threads t1, ..., tn to follow a fixed interleaving

3 while(loop-cond) {

4 Tid t = ChooseThread(t1,...,tn);

5 RunThreadUntil(t, p-schedule);
6
L

The pattern has four parameters: the number (n) of threads
to be controlled during the test, the event predicates, p_start
and p_schedule, and a boolean expression loop_cond. We first
wait for n threads until each of the n threads generates an event
satistying p_start (line 1). Then, we use functions of our library in
Figure 8 to guide the threads to follow a particular schedule (line 2).
Finally, we schedule threads in a loop—at each iteration running one
of the threads until it generates an event satisfying p_schedule.
Then, the SUT is restarted to explore a new thread interleaving.

SearchAll: Traditional model checking. In order to apply model
checking to the SUT in the traditional way, we instrument the entire
code for the SUT. In particular, the instrumentation ensures that
(i) every memory access (read and write) and (ii) every operation
that may cause the executing thread to block (e.g., synchronization
operations such as acquiring a mutex) generate an event. We
over-approximate (ii) by inserting instrumentation before every
function call. Under the assumption that the only source of non-
determinism in the program is the thread schedule, rescheduling
threads at (1) and (2) is sufficient to enumerate all possible thread
schedules of the SUT. The pattern SearchAll instantiates our
generic pattern GenericPattern as follows: (1) p_start =
ThreadStart. (2) Line 2 is omitted. (3) p_schedule =
(ReadsMen || WritesMem | CallsFunc |ThreadEnds). 4)
loop_cond =!HasEnded(t1) || --- || !HasEnded(tn).

SearchInFunc: Restricting search to particular functions. The
pattern SearchInFunc restricts the search for the interleaving of
threads within a set of functions, say F'. In this pattern, we modify
GenericPattern as follows: (1) We only instrument the code so
that a thread generates events only when executing a function in F'.

(2) p-start = EntersFunc(f1) ||-- - | EntersFunc(fm), where
F =£1, ..., fm. (3) Similarly to SearchAl1l, Line 2 is omitted. (4)
loop-cond = InFunc(fl) || - || InFunc(fm), which holds if at

least one of t1, ..., tn is running a function from F.

SearchInFuncLS: Interleaving threads at large steps. For some
benchmarks, we found it useful to limit the scheduling points to
a few special locations in the SUT code. For this, we manually
instrument these locations in the SUT code to generate user-defined
events of the form AtControl(pc). In particular, we associate
each of these locations with a user-defined program counter (pc),
an integer value. Then, we extend the pattern SearchInFunc by
setting p_schedule to (AtControl || ThreadEnds).

SearchInBuggy: Starting search from a suspicious state. Simi-
larly to the pattern SearchInFunc, SearchInBuggy searches for
interleavings within a set F' of functions. However, instead of start-
ing the search from the beginning of the functions, this pattern
includes a fixed schedule before starting the search (at line 2 of
GenericPattern). This fixed schedule is benchmark-specific and
is described by few lines each running RunThread(s)Until.

ExactSchedule. This pattern describes the exact thread schedule
intended by the programmer to generate, for example, to document
a buggy interleaving in a reliable way. In this case, the schedule

only consists of line 1 of GenericPattern and a sequence of
RunThread(s)Until, omitting the search loop at lines 3-8.

SearchInFuncCB: Context-bounded search of interleavings.
There are many reduction techniques for software model checking,
including partial-order reduction [5, 7], preemption bounding [19],
and fair stateless model checking [20]. These optimizations are or-
thogonal to our technique. One can implement these optimizations
within the test script instead of modifying the underlying search al-
gorithm (i.e., the interface for oracle ©). In our experiments, we
found context bounding quite useful to reduce the interleavings
searched when using SearchInFunc. The following is an imple-
mentation of the context-bounded version of GenericSearch.

I
GenericPatternCB(int n, EPred p_start, p_schedule,
BExpr loop.cond, int context_bound) :
1 Tidt1,...,tn = WaitForDistinctThreads(n, p_start);
2 ... // Run threads t1, ..., tn to follow a fixed schedule
3 for(int i = 1;i < context_bound && loop-cond; ++i){
4 Tid t = ChooseThread(td,...,tn);
5 do { // Run next context by thread t
6 RunThreadUntil(t, p-schedule);
7 } while(loop-cond && choose(true, false));
8
9

...... // Interleave each thread sequentially until completion

6. Implementation

We have implemented CONCURRIT as an embedded
DSL for C/C++. Our implementation is available at
http://code.google.com/p/concurrit/. A test in CON-
CURRIT is simply a C++ program. Our implementation supports
the use of CONCURRIT tests in both unit testing and system testing.

6.1 Unit testing with CONCURRIT

For unit testing, the programmer provides the SUT as a shared
library with an entry function named test_main. The executable
CONCURRIT test loads this shared library and calls test_main
multiple times to explore different executions of the SUT.

To instrument the SUT we provide a library with a collection of
functions. We give example instrumentation functions below.

void concurritThreadStart();

void concurritThreadEnd();

void concurritFuncEnter(voids# function,long arg0,longargl);
void concurritFuncReturn(void# function,long return value);
void concurritFuncCall(void# caller,void# callee, long arg0);
void concurritMemRead(voids address, int size, long value);
void concurritMemWrite(void* address, int size, long value);
void concurritControlPoint(int pc);

CONCURRIT can operate with different event granularities. At
one extreme the programmer can insert these functions manually, or
one can use our Pin tool [18] for automatically instrumenting (the
binary of) the SUT at runtime, capturing all memory operations
and function calls/returns. While the the cost can be 10-100x in the
former case, the overhead is very small in the latter case. In our
experiments with larger programs we needed to insert (manually)
very few instrumentation points with negligible cost, which made
our approach lightweight.

6.2 System testing with CONCURRIT

We applied CONCURRIT in system testing of three large servers:
Memcached, Apache httpd, and MySQL. System tests for these
servers carry unique challenges. First, the SUT is composed of
many components with nondeterministic behaviors, such as arbi-
trary network-packet delays and arbitrary assignment of worker
threads to connections. Second, the SUT consists of multiple pro-
cesses interacting with each other using various mechanisms.

http://code.google.com/p/concurrit/

To test such servers, first, we run the CONCURRIT test in a sep-
arate process and perform the event communication between the
SUT processes and the CONCURRIT process using named (FIFO)
pipes. Except when specifically blocked and sequentialized by the
CONCURRIT test, all the threads in these SUT processes run in par-
allel. Except for the threads controlled by the CONCURRIT test,
all the threads in the distributed processes run in parallel with
each other. Second, we define two special events: TestStart and
TestEnd to signal the beginning and the end of an SUT execu-
tion. For example, in memcached, these events are generated when
the requestor process starts and terminates, respectively. The CON-
CURRIT test only controls the events generated (by the memcached
server) between TestStart and TestEnd.

7. Evaluation

In our evaluation of our proposal, we used our implementation of
CONCURRIT described in Section 6 and conducted a case study
on a collection of multithreaded programs. These programs are
from well-known benchmark suits: Inspect [26], PARSEC [3], and
RADBench [12]. Each of our benchmarks contains a concurrency
bug, either real or manually inserted by existing work [11].

For each benchmark, we followed the testing process that
we demonstrated in Section 2 for one of the benchmarks. Dur-
ing this process, we wrote one or more tests in the high-level
DSL described in Section 5, aiming at reproducing the bug in
the benchmark. We started by writing less exact tests (which are
not SearchA11) for each bug using partial information about the
bug. Based on the information obtained from these test execu-
tions we made the tests more precise so that they could repro-
duce the bug by describing only a small number of key schedul-
ing decisions. We found that we can write concise tests for all
of our benchmarks by applying the usage patterns we described
in Section 5.1. For small benchmarks we also wrote tests that
will search all thread schedules (SearchAll) in order to see if
model checking could find these bugs efficiently. Moreover, for
some benchmarks we managed to write tests that are exact sched-
ules (ExactSchedule). The CONCURRIT code for these tests
are available at http://code.google.com/p/concurrit/. We
give sample tests from our benchmarks in Appendix A.

Table 1 shows the results of our study. For each benchmark, the
table shows the various tests we wrote to reproduce a bug in the
benchmark. Our CONCURRIT tests detected the regarding bugs in
all the cases. For each test, we give the number of functions in-
volved in the test, how many extra instrumentation calls were man-
ually inserted in addition to the automated Pin instrumentation, the
number of CONCURRIT DSL lines, number of threads involved in
the test, and the (average) number of schedules explored before hit-
ting the bug. Note that, in the sixth column we only give the num-
ber of threads explicitly controlled by the test; the execution may
contain other threads, which are either blocked or executed in an
uncontrolled manner. For benchmarks streamcluster, memcached,
apache-httpd, and mysql-server we did not use Pin and inserted all
the instrumentation manually (as reported in the forth column). In
this way, our tests become portable as they require no heavy-weight
automated instrumentation.

Full model checking. In our study, we were able to apply tra-
ditional notion of model checking on small benchmarks, namely
bbuf, bzip2, ctrace, pbzip2. The test type “SearchAll” refers to
tests of this kind, which was explained in Section 5.1. In these
tests, we control the scheduling decision after every memory ac-
cess (read or write) and function call. We had to instrument all op-
erations that may introduce nondeterminism and change the thread
schedule. However, we did not control synchronization operations
for locks and condition variables; instead, we inserted scheduling

choices before every function call. This gives two benefits. First, it
ensures that all model checking tests were able to hit the bug, since
instrumenting every function call over-approximates the effect of
synchronization-related functions on the thread schedule. Second,
it makes our approach portable; we do not have to control and im-
plement the semantics of different synchronization operations. Fi-
nally, as expected, we should note that full model checking works
only for small programs, such a data structures. In our experiments,
we bounded the number of executions to 10K, but even for some
small programs SearchAll generated more than 10K executions.

Customizing the search using information about the bug. While
full model checking is impractical, we found that if we use infor-
mation about a bug to restrict the number of explored schedules in
a CONCURRIT test, we can efficiently and reliably reproduce the
bugs. As discussed in Section 5.1, we restricted the traditional no-
tion of model checking to customize the search in three aspects: (1)
In tests “SearchInFunc”, we instrumented only the body of several
functions, say F, that we found related to the bug. The third col-
umn of Table 1 gives the size of F'. Then, we started to search for
thread schedules only when threads were executing functions in F'.
The size of F highlights a common characteristics of concurrency
bugs: they occur due to incorrect synchronization of few functions
and can be detected by focusing the search on these functions. (2)
In tests “SearchInFuncCB2” and “SearchInFuncCB3”, we applied
context-bounded model checking techniques [19] with bounds 2
and 3, respectively. (3) In tests “SearchInFuncLS”, we scheduled
threads at coarse granularity, only after reaching a manually in-
serted control point. We obtained information about these control
points either from the bug report (if the bug report has these details)
or from insight obtained from triggering the bug with less exact
CONCURRIT tests. For example, to check for atomicity violations
using SearchInFuncLS, we inserted these control points around the
accesses to the shared variables that we think will involve in the vi-
olation, and for ordering violations, we inserted the control points
to mark the beginning and end of the code blocks whose differ-
ent orderings may create an error. We found that, when used in
conjunction with restricting the search to functions in F, context
bounding and interleaving threads at coarse granularity are quite
effective to reproduce the bugs in a small number of executions.

Generating exact buggy schedule. For 8§ of our benchmarks, we
were able to refine the test to “ExactSchedule”, after observing a
buggy execution and generalizing its thread schedule in a CON-
CURRIT test, which guides the execution towards the buggy states.
Notice that, compared to tests for search, the size of ExactSched-
ule tests are not longer. This highlights the fact that in many con-
currency bugs only few scheduling decisions involve; by enforcing
these decisions, the bug can still happen in spite of the larger, un-
controlled part of the schedule. While sleep-based approaches ex-
ploit this fact to effectively reproduce simple concurrency bugs, our
technique goes further by making such approches more formal and
reliable for reproducing even more complex bugs.

8. Related work

We observe a spectrum of approaches to specifying and controlling
the thread schedule in testing of concurrent programs. At one end of
the spectrum, there are manual approaches, in which the program-
mer implements synchronization mechanisms to restrict the pos-
sible schedules of threads towards a particular scenario. However,
such mechanisms are either ad hoc and unreliable (e.g., in the case
of sleep statements) or may require nontrivial and unportable mod-
ifications in the program text. Techniques have been proposed to
guide the execution to intended thread schedules in more portable
and reliable ways, where the intended schedules are specified by the

http://code.google.com/p/concurrit/

Benchmark Test pattern [Funcs |[Manual [Test |Threads [Schedules Benchmark Test pattern (Funcs |Manual [Test |Threads |Schedules
involved |instr. LOC |controlled |explored involved |instr. LOC |controlled |explored
bbuf SearchAll all 0 4 4 20 streamcluster SearchInFuncLS |all 9 11 4 >10K
SearchInFuncl |2 0 5 4 12 ExactSchedule |3 9 11 4 1
SearchInFunc2 |2 0 4 2 3 mozilla-nsprl SearchInFunc |1 0 4 2 1020
bzip2 SearchAll all 0 4 3 >10K SearchInFuncCB2 | 1 0 6 2 4
SearchInFunc |2 0 5 3 510 mozilla-nspr2 | SearchInFuncCB2 |2 0 6 2 6
SearchInFuncLS |2 3 5 3 8 ExactSchedule |2 1 5 2 1
ExactSchedule |2 3 6 3 1 mozilla-nsp3 SearchSeqFuncs |1 0 5 2 38
ctrace SearchAll all 0 4 2 >10K spidermonkey 1 SearchAll all 0 4 2 >10K
SearchLargeSteps |4 2 5 2 15 SearchInFunc |2 0 5 2 >10K
ExactSchedule |2 2 6 2 1 SearchInFuncCB3 |2 0 10 2 451
pbzip2 SearchAll all 0 4 4 >10K SearchInFuncCB2 |2 0 7 2 226
SearchLargeSteps | 3 1 4 4 71 spidermonkey?2 SearchAll all 0 4 3 >10K
ExactSchedule |2 1 4 4 1 SearchInFunc |4 0 5 3 >10K
pfscan SearchInFunc |1 0 4 2 67 SearchInBuggy |4 0 8 3 8
SearchInFuncLS |1 1 4 2 51 ExactSchedule |4 0 7 3 1
ExactSchedule |1 1 4 2 1 memcached SearchInFuncLS |2 12 4 2 10
dedup SearchInFunc |1 0 4 2 8 ExactSchedule |2 12 4 2 1
SearchInFuncLS |1 1 4 2 3 apache-httpd SearchInFuncLS |2 14 4 3 7
ExactSchedule |1 1 5 2 1 mysql-server SearchInFuncLS |2 9 5 3 30

Table 1. Experimental results. Our CONCURRIT tests detect the bugs in all the cases.

programmer relative to a global timer (ConAn [16], Multithread-
edTC [23]) or a sequence of user-defined events expressed in linear
temporal logic (IMUnit [9]). While these techniques give the pro-
grammer the ability to impose constraints on the interleaving of
threads, they do not support exploration of all executions satisfying
these constraints.

At the other end of the spectrum, there are fully automated ap-
proaches. To alleviate the nondeterminism in the execution, soft-
ware model checking techniques have been combined with test-
ing to control the thread scheduler so that distinct interleavings of
the threads in the test are systematically enumerated and checked
against the test criteria [6, 14, 19, 21]. However, these techniques
require controlling all sources of nondeterminism in the program,
which is impractical for large programs, such as web servers.

Many model checking exploration techniques have been devel-
oped that seek to achieve high coverage of executions in a scal-
able way [13]—such as partial-order reduction [5, 7], symmetry re-
duction [8], preemption bounding [19], fair stateless model check-
ing [20], and commutativity guided scheduling [25]. These tech-
niques do not directly help to efficiently examine interesting and
potentially-problematic interleaving scenarios. Our proposal allows
the tester to customize the model checking to target such scenar-
ios. Meanwhile, the tester can still implement these reduction tech-
niques within the CONCURRIT test.

Recent studies proposed techniques to control the scheduling
of a model checker to target suspicious executions more quickly
than traditional state-space exploration. Among them, active test-
ing [24], probabilistic scheduling [4], and change-aware preemp-
tion prioritization [10] are fully automated and rely on heuristics.
However, we believe that programmers’ help to guide the explo-
ration of executions is also valuable, and testing tools should be
designed to allow the programmer to interact with the test runtime
to express her intents and insights about the test scenario. In fact,
work on preemption sealing [2] proposed to disable preemptions
that the programmer thinks are not interesting or can cause false
warnings. In our work, we would like to give more control and
flexibility to the programmer in this direction.

Note that our approach enables rapid prototyping and evaluation
of a custom search strategy by writing and exploring a CONCURRIT
test. The work in [15] is in the same spirit of ours, but it focuses on
Boolean programs and allows the user to describe the model check-
ing algorithm as a compact and high-level fixed-point formulation
that can be fed to a general-purpose fixed-point solver.

Recent work in record/replay systems propose recording the
thread schedule partially and reproducing the missing parts of the
schedule during the replay [1, 22]. These systems do search in order

to reproduce a single, feasible schedule, while in our work we do
search to enumerate a space of specified schedules.

Acknowledgments

This research supported in part by Microsoft (Award #024263) and
Intel (Award #024894) funding and by matching funding by U.C.
Discovery (Award #DIG07-10227), by NSF Grants CCF-101781,
CCF-0747390, CCF-1018729, and CCF-1018730, and by a DoD
NDSEG Graduate Fellowship. The last author is supported in part
by a Sloan Foundation Fellowship. Additional support comes from
Oracle (formerly Sun Microsystems), from a gift from Intel, and
from Par Lab afliates National Instruments, NEC, Nokia, NVIDIA,
and Samsung.

References

[1] G. Altekar and I. Stoica. ODR: Output-deterministic replay for multi-
core debugging. In SOSP, 2009.

[2] T. Ball, S. Burckhardt, K. Coons, M. Musuvathi, , and S. Qadeer.
Preemption sealing for efficient concurrency testing. Technical Report
MSR-TR-2009-143, 2009.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Bench-
mark Suite: Characterization and Architectural Implications. In PACT,
2008.

S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A
randomized scheduler with probabilistic guarantees of finding bugs.
In ASPLOS, 2010.

[5] P. Godefroid. Partial-order methods for the verifica-
tion of concurrent systems: an approach to the state-
explosion problem. Springer-Verlag Inc., 1996. URL

[4

citeseer.ist.psu.edu/godefroid95partialorder.html.

[6] P. Godefroid. Software model checking: The verisoft approach. In
Form. Methods Syst. Des., 2005.
[7] G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv. Cartesian partial-order
reduction. In SPIN, 2007.
[8] R.Iosif. Symmetry reduction criteria for software model checking. In
SPIN, 2002.
[9] V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Rosu, and D. Marinov.
Improved multithreaded unit testing. In ESEC/FSE, 2011.
[10] V. Jagannath, Q. Luo, and D. Marinov. Change-aware preemption
prioritization. In ISSTA, 2011.
[11] N. Jalbert and K. Sen. A trace simplification technique for effective
debugging of concurrent programs. In FSE, 2010.

[12] N. Jalbert, C. Pereira, G. Pokam, and K. Sen. RADBench: A concur-
rency bug benchmark suite. In HOTPAR, 2011.

citeseer.ist.psu.edu/godefroid95partialorder.html

[13] R. Jhala and R. Majumdar. ~Software model checking. In ACM
Comput. Surv., 2009.

[14] M. Kim, Y. Kim, and H. Kim. A comparative study of software model
checkers as unit testing tools: An industrial case study. In IEEE Trans.
Softw. Eng., 2011.

[15] S. La Torre, M. Parthasarathy, and G. Parlato. Analyzing recursive
programs using a fixed-point calculus. In PLDI, 2009.

[16] B. Long, D. Hoffman, and P. Strooper. Tool support for testing
concurrent Java components. In IEEE Trans. Softw. Eng., 2003.

[17] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting atomicity
violations via access interleaving invariants. In ASPLOS, 2006.

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building customized pro-
gram analysis tools with dynamic instrumentation. In PLDI, 2005.

[19] M. Musuvathi and S. Qadeer. Iterative context bounding for systematic
testing of multithreaded programs. In PLDI, 2007.

[20] M. Musuvathi and S. Qadeer. Fair stateless model checking. In PLDI,
2008.

[21] V. Mutilin. Concurrent testing of Java components using Java
PathFinder. In ISoLA, 2006.

[22] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu.
PRES: Probabilistic replay with execution sketching on multiproces-
sors. In SOSP, 2009.

[23] W. Pugh and N. Ayewah. Unit testing concurrent software. In ASE,

2007.
[24] K. Sen. Race directed random testing of concurrent programs. In
PLDI, 2008.

[25] O. Shacham, N. Bronson, A. Aiken, M. Sagiv, M. Vechev, and E. Ya-
hav. Testing atomicity of composed concurrent operations. In OOP-
SLA, 2011.

Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A runtime model
checker for multithreaded C programs. Technical Report UUCS-08-
004, 2008.

[26

A. Sample CONCURRIT tests

Parallel tracing library (ctrace)

I

ExactSchedule :

Tid t1, t2 = WaitForDistinctThreads(2, EntersFunc(HASH.READ_ENTER));
RunThreadUntil(t1, AtControl(43) && InFunc(HASREADEXIT));
RunThreadUntil(t2, ReturnsFunc(HASH-READ_ENTER));
RunThreadUntil(t1, ReadsMem & & InFunc(HASH.READ_ENTER));
RunThreadUntil(t2, ReturnsFunc(HASH-READ_EXIT));

RunThreadUntil(t1, ThreadEnds);

O UL W N =

Online clustering kernel (streamcluster)

I 1
ExactSchedule :

// Control locations and other events (FuncEnter, FuncReturn) are all manually inserted in functions
// localSearch, localSearchSub, and pkmedian

Tid tmain = WaitForThread(AnyThread, EntersFunc(pkmedian));
RunThreadUntil(tmain, AtControl(42));

Tid t1, t2, t3 = WaitForThread(AnyThread — tmain, AtControl(42));
RunThreadsUntil(t1, t2, EntersFunc(barrier) | ReturnsFunc(pkmedian));
while(InFunc(t1, pkmedian)) {

RunThreadUntil(t3, EntersFunc(barrier) | ReturnsFunc(pkmedian));
RunThreadsUntil(t1, t2, t3, ExitsFunc(barrier) || ReturnsFunc(pkmedian));
RunThreadsUntil(t1, t2, EntersFunc(barrier) || ReturnsFunc(pkmedian));

OO U WN =
-

10 RunThreadsUntil(t1, t2, ThreadEnds);
11 RunThreadUntil(tm, ThreadEnd);
}2 RunThreadsUntil(t1, t2, ThreadEnds);

RADBench Bug 4 (Mozilla NSPR Library — mozilla-nspr1)

I 1
SearchInFuncCB2 :

1 Tidt1,t2 = WaitForDistinctThreads(2, EntersFunc(MT_safe_localtime));

2 Tidt = ChooseThread(t1, t2);

3 while(choose(true, false)) {

RunThreadUntil(t, ReadsMen || WritesMem || CallsFunc | ThreadEnds);

t = (t==t1)7%2: t1; o
RunThreadUntil(t, ReturnsFunc(MT_safe_localtime)); / assertion violation!

=IO Utk

RADBench Bug 5 (Mozilla NSPR Library — mozilla-nspr2)

I

ExactSchedule :

// Control location 42 is in function PR_-WaitCondVar

Tid t1 = WaitForThread(AnyThread, EntersFunc(PR_WaitCondVar));
RunThreadUntil(t1, AtControl(42));

Tid t2 = WaitForThread(AnyThread — t1, EntersFunc(PR_Interrupt));
RunThreadUntil(t2, ReturnsFunc(PR-Interrupt));

RunThreadUntil(t1, ReturnsFunc(PR_WaitCondVar));

U WO N =

RADBench Bug 6 (Mozilla NSPR Library — mozilla-nspr3)

I

SearchSeqFuncs :

1 Tid t1 = WaitForThread(AnyThread, EntersFunc(reader main));

2 Tid t2 = WaitForThread(AnyThread — t1, EntersFunc(writermain));

3 while(InFunc(t1, readermain) || InFunc(t2, writermain) {

4 Tidt = ChooseThread(t1, t2);

5 RunThreadUntil(t, ReturnsFunc(PR_RWLock Wlock) || ReturnsFunc(PR_RWLock Rlock)
|| ReturnsFunc(PR_RWLock Unlock) | ThreadEnds);

6}

|

RADBench Bug 2 (Mozilla SpiderMonkey JS — spidermonkey1)

I

SearchInFuncCB3 :

Tid t1 = WaitForThread(AnyThread, EntersFunc(js_GC));

Tid t2 = WaitForThread(AnyThread — t1, EntersFunc(JS_ClearContextThread));
Tid t = ChooseThread(t1, t2);

while(choose(true, false)) {

RunThreadUntil(t, ReadsMenm | WritesMem || CallsFunc | ThreadEnds);

t = (t==t1)7t2:tl;
while(choose(true, false)) {
RunThreadUntil(t, ReadsMen || WritesMem || CallsFunc | ThreadEnds);

©O00~TO U WN =
-

10}
11t = (t==t1) 7t2: t1;
}2 RunThreadUntil(t, ThreadEnds); // segmentation fault!

RADBench Bug 8 (Memcached server — memcached)

I
ExactSchedule :
// Control locations (including 42) and other events (FuncEnter, FuncReturn) are all manually
// inserted in functions complete_incr_bin and process_arithmetic_command
1 Tidt1,t2 = WaitForDistinctThreads(2, EntersFunc(complete_incr_bin)
|| EntersFunc(process_arithmetic_command));
2 RunThreadUntil(t1, AtControl(42));
3 RunThreadUntil(t2, ReturnsFunc);
le RunThreadUntil(t1, ReturnsFunc);

RADBench Bug 15 (MySQL Server — mysql-server)

I 1
SearchInFuncLS :
// Control locations and other events (FuncEnter, FuncReturn) are all manually inserted in functions
// mysql_insert and MYSQL_LOG:new_file
Tid t1, t2 = WaitForDistinctThreads(2, EntersFunc(MYSQL_LOG : new_file);
Tid t3 = WaitForThread(AnyThread — t1 — t2, EntersFunc(mysql_insert);
while(InFunc(t1, MYSQL.LOG : new_file)

|| InFunc(t2, MYSQL.LOG : new_file) | InFunc(t3, mysql_insert) {

Tid t = ChooseThread(t1, t2, t3);

RunThreadUntil(t, AtControl | ThreadEnds);

}

O UL W

	Introduction
	Overview: Writing tests in Concurrit
	First test: Run threads sequentially until completion
	Second test: Interleave threads at finest granularity
	Third test: Localize search to suspicious states
	Final test: Generate exact buggy interleaving

	DSL for controlling thread schedules
	Software-under-test (SUT)
	Concurrit: Syntax
	Concurrit: Semantics
	Test state
	Test executions
	Controlling thread schedule with select and release

	Searching for thread schedules
	Implementing oracles for search
	Oracle for depth-first search

	A high-level library for writing concise tests
	Test patterns using high-level constructs

	Implementation
	Unit testing with Concurrit
	System testing with Concurrit

	Evaluation
	Related work
	Sample Concurrit tests

